Le query avanzate in questa pagina si applicano ai dati di esportazione degli eventi BigQuery per Google Analytics. Se vuoi, consulta la guida su BigQuery per Universal Analytics. alla ricerca della stessa risorsa per Universal Analytics. Prova le query di base prima di provare quelle avanzate.
Prodotti acquistati dai clienti che hanno acquistato un determinato prodotto
La seguente query mostra quali altri prodotti sono stati acquistati dai clienti che acquistato un prodotto specifico. Questo esempio non presuppone che i prodotti sono stati acquistati nello stesso ordine.
L'esempio ottimizzato si basa sulle funzionalità di scripting BigQuery per definire una variabile
che dichiara per quali elementi filtrare. Anche se questo non migliora il rendimento,
Si tratta di un approccio più leggibile per la definizione delle variabili rispetto alla creazione di un
tabella con valore singolo utilizzando una clausola WITH
. La query semplificata utilizza quest'ultimo
utilizzando la clausola WITH
.
La query semplificata crea un elenco separato di "acquirenti del prodotto A" ed esegue una
unirsi a questi dati. La query ottimizzata crea invece un elenco di tutti gli elementi
l'utente ha effettuato acquisti per più ordini utilizzando la funzione ARRAY_AGG
. Quindi, utilizzando
nella clausola WHERE
esterna, gli elenchi di acquisti di tutti gli utenti vengono filtrati in base
target_item
e solo gli elementi pertinenti.
Semplificato
-- Example: Products purchased by customers who purchased a specific product.
--
-- `Params` is used to hold the value of the selected product and is referenced
-- throughout the query.
WITH
Params AS (
-- Replace with selected item_name or item_id.
SELECT 'Google Navy Speckled Tee' AS selected_product
),
PurchaseEvents AS (
SELECT
user_pseudo_id,
items
FROM
-- Replace table name.
`bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`
WHERE
-- Replace date range.
_TABLE_SUFFIX BETWEEN '20201101' AND '20210131'
AND event_name = 'purchase'
),
ProductABuyers AS (
SELECT DISTINCT
user_pseudo_id
FROM
Params,
PurchaseEvents,
UNNEST(items) AS items
WHERE
-- item.item_id can be used instead of items.item_name.
items.item_name = selected_product
)
SELECT
items.item_name AS item_name,
SUM(items.quantity) AS item_quantity
FROM
Params,
PurchaseEvents,
UNNEST(items) AS items
WHERE
user_pseudo_id IN (SELECT user_pseudo_id FROM ProductABuyers)
-- item.item_id can be used instead of items.item_name
AND items.item_name != selected_product
GROUP BY 1
ORDER BY item_quantity DESC;
Ottimizzato
-- Optimized Example: Products purchased by customers who purchased a specific product.
-- Replace item name
DECLARE target_item STRING DEFAULT 'Google Navy Speckled Tee';
SELECT
IL.item_name AS item_name,
SUM(IL.quantity) AS quantity
FROM
(
SELECT
user_pseudo_id,
ARRAY_AGG(STRUCT(item_name, quantity)) AS item_list
FROM
-- Replace table
`bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`, UNNEST(items)
WHERE
-- Replace date range
_TABLE_SUFFIX BETWEEN '20201201' AND '20201210'
AND event_name = 'purchase'
GROUP BY
1
),
UNNEST(item_list) AS IL
WHERE
target_item IN (SELECT item_name FROM UNNEST(item_list))
-- Remove the following line if you want the target_item to appear in the results
AND target_item != IL.item_name
GROUP BY
item_name
ORDER BY
quantity DESC;
Importo medio speso per sessione di acquisto dall'utente
La seguente query mostra l'importo medio speso per sessione per ogni utente. Vengono prese in considerazione solo le sessioni in cui l'utente ha effettuato un acquisto.
-- Example: Average amount of money spent per purchase session by user.
WITH
events AS (
SELECT
session.value.int_value AS session_id,
COALESCE(spend.value.int_value, spend.value.float_value, spend.value.double_value, 0.0)
AS spend_value,
event.*
-- Replace table name
FROM `bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*` AS event
LEFT JOIN UNNEST(event.event_params) AS session
ON session.key = 'ga_session_id'
LEFT JOIN UNNEST(event.event_params) AS spend
ON spend.key = 'value'
-- Replace date range
WHERE _TABLE_SUFFIX BETWEEN '20201101' AND '20210131'
)
SELECT
user_pseudo_id,
COUNT(DISTINCT session_id) AS session_count,
SUM(spend_value) / COUNT(DISTINCT session_id) AS avg_spend_per_session_by_user
FROM events
WHERE event_name = 'purchase' and session_id IS NOT NULL
GROUP BY user_pseudo_id
ID e numero di sessione più recenti per gli utenti
La seguente query fornisce l'elenco degli ultimi ga_session_id e
ga_session_number degli ultimi 4 giorni per un elenco di utenti. Puoi fornire un
Elenco user_pseudo_id
o user_id
.
user_pseudo_id
-- Get the latest ga_session_id and ga_session_number for specific users during last 4 days.
-- Replace timezone. List at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.
DECLARE REPORTING_TIMEZONE STRING DEFAULT 'America/Los_Angeles';
-- Replace list of user_pseudo_id's with ones you want to query.
DECLARE USER_PSEUDO_ID_LIST ARRAY<STRING> DEFAULT
[
'1005355938.1632145814', '979622592.1632496588', '1101478530.1632831095'];
CREATE TEMP FUNCTION GetParamValue(params ANY TYPE, target_key STRING)
AS (
(SELECT `value` FROM UNNEST(params) WHERE key = target_key LIMIT 1)
);
CREATE TEMP FUNCTION GetDateSuffix(date_shift INT64, timezone STRING)
AS (
(SELECT FORMAT_DATE('%Y%m%d', DATE_ADD(CURRENT_DATE(timezone), INTERVAL date_shift DAY)))
);
SELECT DISTINCT
user_pseudo_id,
FIRST_VALUE(GetParamValue(event_params, 'ga_session_id').int_value)
OVER (UserWindow) AS ga_session_id,
FIRST_VALUE(GetParamValue(event_params, 'ga_session_number').int_value)
OVER (UserWindow) AS ga_session_number
FROM
-- Replace table name.
`bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`
WHERE
user_pseudo_id IN UNNEST(USER_PSEUDO_ID_LIST)
AND RIGHT(_TABLE_SUFFIX, 8)
BETWEEN GetDateSuffix(-3, REPORTING_TIMEZONE)
AND GetDateSuffix(0, REPORTING_TIMEZONE)
WINDOW UserWindow AS (PARTITION BY user_pseudo_id ORDER BY event_timestamp DESC);
user_id
-- Get the latest ga_session_id and ga_session_number for specific users during last 4 days.
-- Replace timezone. List at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.
DECLARE REPORTING_TIMEZONE STRING DEFAULT 'America/Los_Angeles';
-- Replace list of user_id's with ones you want to query.
DECLARE USER_ID_LIST ARRAY<STRING> DEFAULT ['<user_id_1>', '<user_id_2>', '<user_id_n>'];
CREATE TEMP FUNCTION GetParamValue(params ANY TYPE, target_key STRING)
AS (
(SELECT `value` FROM UNNEST(params) WHERE key = target_key LIMIT 1)
);
CREATE TEMP FUNCTION GetDateSuffix(date_shift INT64, timezone STRING)
AS (
(SELECT FORMAT_DATE('%Y%m%d', DATE_ADD(CURRENT_DATE(timezone), INTERVAL date_shift DAY)))
);
SELECT DISTINCT
user_pseudo_id,
FIRST_VALUE(GetParamValue(event_params, 'ga_session_id').int_value)
OVER (UserWindow) AS ga_session_id,
FIRST_VALUE(GetParamValue(event_params, 'ga_session_number').int_value)
OVER (UserWindow) AS ga_session_number
FROM
-- Replace table name.
`bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`
WHERE
user_id IN UNNEST(USER_ID_LIST)
AND RIGHT(_TABLE_SUFFIX, 8)
BETWEEN GetDateSuffix(-3, REPORTING_TIMEZONE)
AND GetDateSuffix(0, REPORTING_TIMEZONE)
WINDOW UserWindow AS (PARTITION BY user_pseudo_id ORDER BY event_timestamp DESC);