Prova il server MCP per Google Analytics. Installa da
GitHub e consulta l'
annuncio per maggiori dettagli.
Query avanzate
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Le query avanzate in questa pagina si applicano ai dati di esportazione degli eventi BigQuery per
Google Analytics. Se vuoi, consulta la guida su BigQuery per Universal Analytics.
alla ricerca della stessa risorsa per Universal Analytics. Prova le query di base
prima di provare quelle avanzate.
Prodotti acquistati dai clienti che hanno acquistato un determinato prodotto
La seguente query mostra quali altri prodotti sono stati acquistati dai clienti che
acquistato un prodotto specifico. Questo esempio non presuppone che i prodotti
sono stati acquistati nello stesso ordine.
L'esempio ottimizzato si basa sulle funzionalità di scripting BigQuery per definire una variabile
che dichiara per quali elementi filtrare. Anche se questo non migliora il rendimento,
Si tratta di un approccio più leggibile per la definizione delle variabili rispetto alla creazione di un
tabella con valore singolo utilizzando una clausola WITH
. La query semplificata utilizza quest'ultimo
utilizzando la clausola WITH
.
La query semplificata crea un elenco separato di "acquirenti del prodotto A" ed esegue una
unirsi a questi dati. La query ottimizzata crea invece un elenco di tutti gli elementi
l'utente ha effettuato acquisti per più ordini utilizzando la funzione ARRAY_AGG
. Quindi, utilizzando
nella clausola WHERE
esterna, gli elenchi di acquisti di tutti gli utenti vengono filtrati in base
target_item
e solo gli elementi pertinenti.
Semplificato
-- Example: Products purchased by customers who purchased a specific product.
--
-- `Params` is used to hold the value of the selected product and is referenced
-- throughout the query.
WITH
Params AS (
-- Replace with selected item_name or item_id.
SELECT 'Google Navy Speckled Tee' AS selected_product
),
PurchaseEvents AS (
SELECT
user_pseudo_id,
items
FROM
-- Replace table name.
`bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`
WHERE
-- Replace date range.
_TABLE_SUFFIX BETWEEN '20201101' AND '20210131'
AND event_name = 'purchase'
),
ProductABuyers AS (
SELECT DISTINCT
user_pseudo_id
FROM
Params,
PurchaseEvents,
UNNEST(items) AS items
WHERE
-- item.item_id can be used instead of items.item_name.
items.item_name = selected_product
)
SELECT
items.item_name AS item_name,
SUM(items.quantity) AS item_quantity
FROM
Params,
PurchaseEvents,
UNNEST(items) AS items
WHERE
user_pseudo_id IN (SELECT user_pseudo_id FROM ProductABuyers)
-- item.item_id can be used instead of items.item_name
AND items.item_name != selected_product
GROUP BY 1
ORDER BY item_quantity DESC;
Ottimizzato
-- Optimized Example: Products purchased by customers who purchased a specific product.
-- Replace item name
DECLARE target_item STRING DEFAULT 'Google Navy Speckled Tee';
SELECT
IL.item_name AS item_name,
SUM(IL.quantity) AS quantity
FROM
(
SELECT
user_pseudo_id,
ARRAY_AGG(STRUCT(item_name, quantity)) AS item_list
FROM
-- Replace table
`bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`, UNNEST(items)
WHERE
-- Replace date range
_TABLE_SUFFIX BETWEEN '20201201' AND '20201210'
AND event_name = 'purchase'
GROUP BY
1
),
UNNEST(item_list) AS IL
WHERE
target_item IN (SELECT item_name FROM UNNEST(item_list))
-- Remove the following line if you want the target_item to appear in the results
AND target_item != IL.item_name
GROUP BY
item_name
ORDER BY
quantity DESC;
Importo medio speso per sessione di acquisto dall'utente
La seguente query mostra l'importo medio speso per sessione per ogni
utente. Vengono prese in considerazione solo le sessioni in cui l'utente ha effettuato un acquisto.
-- Example: Average amount of money spent per purchase session by user.
WITH
events AS (
SELECT
session.value.int_value AS session_id,
COALESCE(spend.value.int_value, spend.value.float_value, spend.value.double_value, 0.0)
AS spend_value,
event.*
-- Replace table name
FROM `bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*` AS event
LEFT JOIN UNNEST(event.event_params) AS session
ON session.key = 'ga_session_id'
LEFT JOIN UNNEST(event.event_params) AS spend
ON spend.key = 'value'
-- Replace date range
WHERE _TABLE_SUFFIX BETWEEN '20201101' AND '20210131'
)
SELECT
user_pseudo_id,
COUNT(DISTINCT session_id) AS session_count,
SUM(spend_value) / COUNT(DISTINCT session_id) AS avg_spend_per_session_by_user
FROM events
WHERE event_name = 'purchase' and session_id IS NOT NULL
GROUP BY user_pseudo_id
ID e numero di sessione più recenti per gli utenti
La seguente query fornisce l'elenco degli ultimi ga_session_id e
ga_session_number degli ultimi 4 giorni per un elenco di utenti. Puoi fornire un
Elenco user_pseudo_id
o user_id
.
user_pseudo_id
-- Get the latest ga_session_id and ga_session_number for specific users during last 4 days.
-- Replace timezone. List at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.
DECLARE REPORTING_TIMEZONE STRING DEFAULT 'America/Los_Angeles';
-- Replace list of user_pseudo_id's with ones you want to query.
DECLARE USER_PSEUDO_ID_LIST ARRAY<STRING> DEFAULT
[
'1005355938.1632145814', '979622592.1632496588', '1101478530.1632831095'];
CREATE TEMP FUNCTION GetParamValue(params ANY TYPE, target_key STRING)
AS (
(SELECT `value` FROM UNNEST(params) WHERE key = target_key LIMIT 1)
);
CREATE TEMP FUNCTION GetDateSuffix(date_shift INT64, timezone STRING)
AS (
(SELECT FORMAT_DATE('%Y%m%d', DATE_ADD(CURRENT_DATE(timezone), INTERVAL date_shift DAY)))
);
SELECT DISTINCT
user_pseudo_id,
FIRST_VALUE(GetParamValue(event_params, 'ga_session_id').int_value)
OVER (UserWindow) AS ga_session_id,
FIRST_VALUE(GetParamValue(event_params, 'ga_session_number').int_value)
OVER (UserWindow) AS ga_session_number
FROM
-- Replace table name.
`bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`
WHERE
user_pseudo_id IN UNNEST(USER_PSEUDO_ID_LIST)
AND RIGHT(_TABLE_SUFFIX, 8)
BETWEEN GetDateSuffix(-3, REPORTING_TIMEZONE)
AND GetDateSuffix(0, REPORTING_TIMEZONE)
WINDOW UserWindow AS (PARTITION BY user_pseudo_id ORDER BY event_timestamp DESC);
user_id
-- Get the latest ga_session_id and ga_session_number for specific users during last 4 days.
-- Replace timezone. List at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.
DECLARE REPORTING_TIMEZONE STRING DEFAULT 'America/Los_Angeles';
-- Replace list of user_id's with ones you want to query.
DECLARE USER_ID_LIST ARRAY<STRING> DEFAULT ['<user_id_1>', '<user_id_2>', '<user_id_n>'];
CREATE TEMP FUNCTION GetParamValue(params ANY TYPE, target_key STRING)
AS (
(SELECT `value` FROM UNNEST(params) WHERE key = target_key LIMIT 1)
);
CREATE TEMP FUNCTION GetDateSuffix(date_shift INT64, timezone STRING)
AS (
(SELECT FORMAT_DATE('%Y%m%d', DATE_ADD(CURRENT_DATE(timezone), INTERVAL date_shift DAY)))
);
SELECT DISTINCT
user_pseudo_id,
FIRST_VALUE(GetParamValue(event_params, 'ga_session_id').int_value)
OVER (UserWindow) AS ga_session_id,
FIRST_VALUE(GetParamValue(event_params, 'ga_session_number').int_value)
OVER (UserWindow) AS ga_session_number
FROM
-- Replace table name.
`bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`
WHERE
user_id IN UNNEST(USER_ID_LIST)
AND RIGHT(_TABLE_SUFFIX, 8)
BETWEEN GetDateSuffix(-3, REPORTING_TIMEZONE)
AND GetDateSuffix(0, REPORTING_TIMEZONE)
WINDOW UserWindow AS (PARTITION BY user_pseudo_id ORDER BY event_timestamp DESC);
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2024-09-12 UTC.
[null,null,["Ultimo aggiornamento 2024-09-12 UTC."],[[["\u003cp\u003eThis page provides advanced BigQuery queries for analyzing Google Analytics 4 event export data, going beyond basic queries.\u003c/p\u003e\n"],["\u003cp\u003eIt includes queries to identify products frequently purchased together, calculate average spending per purchase session, and retrieve the latest session information for specific users.\u003c/p\u003e\n"],["\u003cp\u003eThe queries are demonstrated with examples and explanations, including simplified and optimized versions where applicable.\u003c/p\u003e\n"],["\u003cp\u003eBefore using these advanced queries, it's recommended to familiarize yourself with the basic BigQuery queries for Google Analytics 4.\u003c/p\u003e\n"],["\u003cp\u003eUsers of Universal Analytics can find similar resources in the BigQuery cookbook for Universal Analytics linked on the page.\u003c/p\u003e\n"]]],["This document provides advanced BigQuery queries for Google Analytics event data. It details how to identify other products purchased by customers who bought a specific item, offering both simplified and optimized query examples that filter purchase lists. Another query calculates the average amount spent per purchase session per user. Lastly, it outlines how to retrieve the latest session ID and number for users, with examples for both `user_pseudo_id` and `user_id` lists.\n"],null,["# Advanced queries\n\nThe advanced queries in this page apply to the BigQuery event export data for\nGoogle Analytics. See [BigQuery cookbook for Universal Analytics](https://support.google.com/analytics/answer/4419694) if you are\nlooking for the same resource for Universal Analytics. Try the [basic queries](/analytics/bigquery/basic-queries)\nfirst before trying out the advanced ones.\n\n### Products purchased by customers who purchased a certain product\n\nThe following query shows what other products were purchased by customers who\npurchased a specific product. This example does not assume that the products\nwere purchased in the same order.\n\nThe optimized example relies on BigQuery scripting features to define a variable\nthat declares which items to filter on. While this does not improve performance,\nthis is a more readable approach for defining variables compared creating a\nsingle value table using a `WITH` clause. The simplified query uses the latter\napproach using the `WITH` clause.\n\nThe simplified query creats a separate list of \"Product A buyers\" and does a\njoin with that data. The optimized query, instead, creates a list of all items a\nuser has purchased across orders using the `ARRAY_AGG` function. Then using the\nouter `WHERE` clause, purchase lists across all users are filtered for the\n`target_item` and only relevant items are shown. \n\n### Simplified\n\n -- Example: Products purchased by customers who purchased a specific product.\n --\n -- `Params` is used to hold the value of the selected product and is referenced\n -- throughout the query.\n\n WITH\n Params AS (\n -- Replace with selected item_name or item_id.\n SELECT 'Google Navy Speckled Tee' AS selected_product\n ),\n PurchaseEvents AS (\n SELECT\n user_pseudo_id,\n items\n FROM\n -- Replace table name.\n `bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`\n WHERE\n -- Replace date range.\n _TABLE_SUFFIX BETWEEN '20201101' AND '20210131'\n AND event_name = 'purchase'\n ),\n ProductABuyers AS (\n SELECT DISTINCT\n user_pseudo_id\n FROM\n Params,\n PurchaseEvents,\n UNNEST(items) AS items\n WHERE\n -- item.item_id can be used instead of items.item_name.\n items.item_name = selected_product\n )\n SELECT\n items.item_name AS item_name,\n SUM(items.quantity) AS item_quantity\n FROM\n Params,\n PurchaseEvents,\n UNNEST(items) AS items\n WHERE\n user_pseudo_id IN (SELECT user_pseudo_id FROM ProductABuyers)\n -- item.item_id can be used instead of items.item_name\n AND items.item_name != selected_product\n GROUP BY 1\n ORDER BY item_quantity DESC;\n\n### Optimized\n\n -- Optimized Example: Products purchased by customers who purchased a specific product.\n\n -- Replace item name\n DECLARE target_item STRING DEFAULT 'Google Navy Speckled Tee';\n\n SELECT\n IL.item_name AS item_name,\n SUM(IL.quantity) AS quantity\n FROM\n (\n SELECT\n user_pseudo_id,\n ARRAY_AGG(STRUCT(item_name, quantity)) AS item_list\n FROM\n -- Replace table\n `bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`, UNNEST(items)\n WHERE\n -- Replace date range\n _TABLE_SUFFIX BETWEEN '20201201' AND '20201210'\n AND event_name = 'purchase'\n GROUP BY\n 1\n ),\n UNNEST(item_list) AS IL\n WHERE\n target_item IN (SELECT item_name FROM UNNEST(item_list))\n -- Remove the following line if you want the target_item to appear in the results\n AND target_item != IL.item_name\n GROUP BY\n item_name\n ORDER BY\n quantity DESC;\n\n### Average amount of money spent per purchase session by user\n\nThe following query shows the average amount of money spent per session by each\nuser. This takes into account only the sessions where the user made a purchase. \n\n -- Example: Average amount of money spent per purchase session by user.\n\n WITH\n events AS (\n SELECT\n session.value.int_value AS session_id,\n COALESCE(spend.value.int_value, spend.value.float_value, spend.value.double_value, 0.0)\n AS spend_value,\n event.*\n\n -- Replace table name\n FROM `bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*` AS event\n LEFT JOIN UNNEST(event.event_params) AS session\n ON session.key = 'ga_session_id'\n LEFT JOIN UNNEST(event.event_params) AS spend\n ON spend.key = 'value'\n\n -- Replace date range\n WHERE _TABLE_SUFFIX BETWEEN '20201101' AND '20210131'\n )\n SELECT\n user_pseudo_id,\n COUNT(DISTINCT session_id) AS session_count,\n SUM(spend_value) / COUNT(DISTINCT session_id) AS avg_spend_per_session_by_user\n FROM events\n WHERE event_name = 'purchase' and session_id IS NOT NULL\n GROUP BY user_pseudo_id\n\n### Latest Session Id and Session Number for users\n\nThe following query provides the list of the latest ga_session_id and\nga_session_number from last 4 days for a list of users. You can provide either a\n`user_pseudo_id` list or a `user_id` list. \n\n### user_pseudo_id\n\n -- Get the latest ga_session_id and ga_session_number for specific users during last 4 days.\n\n -- Replace timezone. List at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.\n DECLARE REPORTING_TIMEZONE STRING DEFAULT 'America/Los_Angeles';\n\n -- Replace list of user_pseudo_id's with ones you want to query.\n DECLARE USER_PSEUDO_ID_LIST ARRAY\u003cSTRING\u003e DEFAULT\n [\n '1005355938.1632145814', '979622592.1632496588', '1101478530.1632831095'];\n\n CREATE TEMP FUNCTION GetParamValue(params ANY TYPE, target_key STRING)\n AS (\n (SELECT `value` FROM UNNEST(params) WHERE key = target_key LIMIT 1)\n );\n\n CREATE TEMP FUNCTION GetDateSuffix(date_shift INT64, timezone STRING)\n AS (\n (SELECT FORMAT_DATE('%Y%m%d', DATE_ADD(CURRENT_DATE(timezone), INTERVAL date_shift DAY)))\n );\n\n SELECT DISTINCT\n user_pseudo_id,\n FIRST_VALUE(GetParamValue(event_params, 'ga_session_id').int_value)\n OVER (UserWindow) AS ga_session_id,\n FIRST_VALUE(GetParamValue(event_params, 'ga_session_number').int_value)\n OVER (UserWindow) AS ga_session_number\n FROM\n -- Replace table name.\n `bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`\n WHERE\n user_pseudo_id IN UNNEST(USER_PSEUDO_ID_LIST)\n AND RIGHT(_TABLE_SUFFIX, 8)\n BETWEEN GetDateSuffix(-3, REPORTING_TIMEZONE)\n AND GetDateSuffix(0, REPORTING_TIMEZONE)\n WINDOW UserWindow AS (PARTITION BY user_pseudo_id ORDER BY event_timestamp DESC);\n\n### user_id\n\n -- Get the latest ga_session_id and ga_session_number for specific users during last 4 days.\n\n -- Replace timezone. List at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.\n DECLARE REPORTING_TIMEZONE STRING DEFAULT 'America/Los_Angeles';\n\n -- Replace list of user_id's with ones you want to query.\n DECLARE USER_ID_LIST ARRAY\u003cSTRING\u003e DEFAULT ['\u003cuser_id_1\u003e', '\u003cuser_id_2\u003e', '\u003cuser_id_n\u003e'];\n\n CREATE TEMP FUNCTION GetParamValue(params ANY TYPE, target_key STRING)\n AS (\n (SELECT `value` FROM UNNEST(params) WHERE key = target_key LIMIT 1)\n );\n\n CREATE TEMP FUNCTION GetDateSuffix(date_shift INT64, timezone STRING)\n AS (\n (SELECT FORMAT_DATE('%Y%m%d', DATE_ADD(CURRENT_DATE(timezone), INTERVAL date_shift DAY)))\n );\n\n SELECT DISTINCT\n user_pseudo_id,\n FIRST_VALUE(GetParamValue(event_params, 'ga_session_id').int_value)\n OVER (UserWindow) AS ga_session_id,\n FIRST_VALUE(GetParamValue(event_params, 'ga_session_number').int_value)\n OVER (UserWindow) AS ga_session_number\n FROM\n -- Replace table name.\n `bigquery-public-data.ga4_obfuscated_sample_ecommerce.events_*`\n WHERE\n user_id IN UNNEST(USER_ID_LIST)\n AND RIGHT(_TABLE_SUFFIX, 8)\n BETWEEN GetDateSuffix(-3, REPORTING_TIMEZONE)\n AND GetDateSuffix(0, REPORTING_TIMEZONE)\n WINDOW UserWindow AS (PARTITION BY user_pseudo_id ORDER BY event_timestamp DESC);"]]