Google Analytics 用户数据导出查询

本页面中的查询示例适用于导出以下对象的 BigQuery 用户数据: Google Analytics。BigQuery 用户数据导出功能会针对每一天创建两个表格:

  1. users_YYYYMMDD 表格,包含与每个更改的用户 ID 对应的行。
  2. pseudonymous_users_YYYYMMDD 表格,包含与每个更改的假名化标识符对应的行。

查看 BigQuery Export 用户数据架构了解详情。

如需在 BigQuery 用户数据导出数据集内查询特定日期范围内的数据,请在查询的 WHERE 子句中使用 _TABLE_SUFFIX 伪列。

例如,以下查询统计了在 2023 年 8 月 1 日至 2023 年 8 月 15 日期间更新的生命周期互动时长至少为五分钟的唯一身份用户数。

-- Example: Query a specific date range for users meeting a lifetime engagement criterion.
--
-- Counts unique users that are in the BigQuery user-data exports for a specific date range and have
-- a lifetime engagement of 5 minutes or more.

SELECT
  COUNT
(DISTINCT user_id) AS user_count
FROM
 
-- Uses a table suffix wildcard to define the set of daily tables to query.
 
`PROJECT_ID.analytics_PROPERTY_ID.users_202308*`
WHERE
 
-- Filters to users updated between August 1 and August 15.
  _TABLE_SUFFIX
BETWEEN '01' AND '15'
 
-- Filters by users who have a lifetime engagement of 5 minutes or more.
 
AND user_ltv.engagement_time_millis >= 5 * 60 * 1000;
-- Example: Query a specific date range for users meeting a lifetime engagement criterion.
--
-- Counts unique pseudonymous users that are in the BigQuery user-data exports for a specific date
-- range and have a lifetime engagement of 5 minutes or more.

SELECT
  COUNT
(DISTINCT pseudo_user_id) AS pseudo_user_count
FROM
 
-- Uses a table suffix wildcard to define the set of daily tables to query.
 
`PROJECT_ID.analytics_PROPERTY_ID.pseudonymous_users_202308*`
WHERE
 
-- Filters to users updated between August 1 and August 15.
  _TABLE_SUFFIX
BETWEEN '01' AND '15'
 
-- Filters by users who have a lifetime engagement of 5 minutes or more.
 
AND user_ltv.engagement_time_millis >= 5 * 60 * 1000;

通过以下两种功能,可将每个示例的数据日期范围限制为 2023 年 8 月 1 日至 2023 年 8 月 15 日:

  1. FROM 子句中的通配符 202308*
  2. WHERE 子句中的 _TABLE_SUFFIX 条件,可根据表名的通配符部分筛选表。对于 202308* 的通配符,通配符部分是一个月中的某一天。

您可以使用类似方法查询多个月的数据。例如,如需查询 2023 年 1 月至 10 月的数据,请将查询修改为采用以下通配符和条件:

  1. 通配符 2023*
  2. _TABLE_SUFFIX BETWEEN '0101' AND '1031'_TABLE_SUFFIX 条件。

您还可以查询数年的数据。例如,要查询 2022 年 10 月至 2023 年 2 月的数据,请将查询修改为采用以下通配符和条件:

  1. 通配符 202*
  2. _TABLE_SUFFIX BETWEEN '21001' AND '30331'_TABLE_SUFFIX 条件。

近期的用户属性更改对应的用户 ID

以下查询展示了如何检索最近更改了特定用户属性的所有用户的 user_idpseudo_user_id

-- Example: Get the list of user_ids with recent changes to a specific user property.
DECLARE
  UPDATE_LOWER_BOUND_MICROS INT64
;

-- Replace timezone. List at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.
DECLARE
  REPORTING_TIMEZONE STRING
DEFAULT 'America/Los_Angeles';

-- Sets the variable for the earliest update time to include. This comes after setting
-- the REPORTING_TIMEZONE so this expression can use that variable.
SET UPDATE_LOWER_BOUND_MICROS = UNIX_MICROS(
    TIMESTAMP_SUB
(
      TIMESTAMP_TRUNC
(CURRENT_TIMESTAMP(), DAY, REPORTING_TIMEZONE),
      INTERVAL
14 DAY));

-- Selects users with changes to a specific user property since the lower bound.
SELECT
  users
.user_id,
  FORMAT_TIMESTAMP
('%F %T',
    TIMESTAMP_MICROS
(
      MAX
(properties.value.set_timestamp_micros)),
      REPORTING_TIMEZONE
) AS max_set_timestamp
FROM
 
-- Uses a table prefix to scan all data for 2023. Update the prefix as needed to query a different
 
-- date range.
 
`PROJECT_ID.analytics_PROPERTY_ID.users_2023*` AS users,
  users
.user_properties properties
WHERE
  properties
.value.user_property_name = 'job_function'
 
AND properties.value.set_timestamp_micros >= UPDATE_LOWER_BOUND_MICROS
GROUP BY
 
1;
-- Example: Get the list of pseudo_user_ids with recent changes to a specific user property.
DECLARE
  UPDATE_LOWER_BOUND_MICROS INT64
;

-- Replace timezone. List at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.
DECLARE
  REPORTING_TIMEZONE STRING
DEFAULT 'America/Los_Angeles';

-- Sets the variable for the earliest update time to include. This comes after setting
-- the REPORTING_TIMEZONE so this expression can use that variable.
SET UPDATE_LOWER_BOUND_MICROS = UNIX_MICROS(
    TIMESTAMP_SUB
(
      TIMESTAMP_TRUNC
(CURRENT_TIMESTAMP(), DAY, REPORTING_TIMEZONE),
      INTERVAL
14 DAY));

-- Selects users with changes to a specific user property since the lower bound.
SELECT
  users
.pseudo_user_id,
  FORMAT_TIMESTAMP
('%F %T',
    TIMESTAMP_MICROS
(
      MAX
(properties.value.set_timestamp_micros)),
      REPORTING_TIMEZONE
) AS max_set_timestamp
FROM
 
-- Uses a table prefix to scan all data for 2023. Update the prefix as needed to query a different
 
-- date range.
 
`PROJECT_ID.analytics_PROPERTY_ID.pseudonymous_users_2023*` AS users,
  users
.user_properties properties
WHERE
  properties
.value.user_property_name = 'job_function'
 
AND properties.value.set_timestamp_micros >= UPDATE_LOWER_BOUND_MICROS
GROUP BY
 
1;

更新摘要

使用此查询可以了解用户数据导出包含或排除不同用户类别的原因。

-- Summarizes data by change type.

-- Defines the export date to query. This must match the table suffix in the FROM
-- clause below.
DECLARE EXPORT_DATE DATE DEFAULT DATE(2023,6,16);

-- Creates a temporary function that will return true if a timestamp (in micros) is for the same
-- date as the specified day value.
CREATE TEMP FUNCTION WithinDay(ts_micros INT64, day_value DATE)
AS (
 
(ts_micros IS NOT NULL) AND
 
-- Change the timezone to your property's reporting time zone.
 
-- List at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.
 
(DATE(TIMESTAMP_MICROS(ts_micros), 'America/Los_Angeles') = day_value)
);

-- Creates a temporary function that will return true if a date string in 'YYYYMMDD' format is
-- for the same date as the specified day value.
CREATE TEMP FUNCTION SameDate(date_string STRING, day_value DATE)
AS (
 
(date_string IS NOT NULL) AND
 
(PARSE_DATE('%Y%m%d', date_string) = day_value)
);

WITH change_types AS (
SELECT user_id,
  WithinDay
(user_info.last_active_timestamp_micros, EXPORT_DATE) AS user_activity,
  WithinDay
(user_info.user_first_touch_timestamp_micros, EXPORT_DATE) AS first_touch,
  SameDate
(user_info.first_purchase_date, EXPORT_DATE) as first_purchase,
 
(EXISTS (SELECT 1 FROM UNNEST(audiences) AS aud
           
WHERE WithinDay(aud.membership_start_timestamp_micros, EXPORT_DATE))) AS audience_add,
 
(EXISTS (SELECT 1 FROM UNNEST(audiences) AS aud
           
WHERE WithinDay(aud.membership_expiry_timestamp_micros, EXPORT_DATE))) AS audience_remove,
 
(EXISTS (SELECT 1 FROM UNNEST(user_properties) AS prop
           
WHERE WithinDay(prop.value.set_timestamp_micros, EXPORT_DATE))) AS user_property_change
FROM
 
-- The table suffix must match the date used to define EXPORT_DATE above.
 
`project_id.analytics_property_id.users_20230616`
)
SELECT
  user_activity
,
  first_touch
,
  first_purchase
,
  audience_add
,
  audience_remove
,
  user_property_change
,
 
-- This field will be true if there are no changes for the other change types.
 
NOT (user_activity OR first_touch OR audience_add OR audience_remove OR user_property_change) AS other_change,
  COUNT
(DISTINCT user_id) AS user_id_count
FROM change_types
GROUP BY 1,2,3,4,5,6,7;
-- Summarizes data by change type.

-- Defines the export date to query. This must match the table suffix in the FROM
-- clause below.
DECLARE EXPORT_DATE DATE DEFAULT DATE(2023,6,16);

-- Creates a temporary function that will return true if a timestamp (in micros) is for the same
-- date as the specified day value.
CREATE TEMP FUNCTION WithinDay(ts_micros INT64, day_value DATE)
AS (
 
(ts_micros IS NOT NULL) AND
 
-- Change the timezone to your property's reporting time zone.
 
-- List at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.
 
(DATE(TIMESTAMP_MICROS(ts_micros), 'America/Los_Angeles') = day_value)
);

-- Creates a temporary function that will return true if a date string in 'YYYYMMDD' format is
-- for the same date as the specified day value.
CREATE TEMP FUNCTION SameDate(date_string STRING, day_value DATE)
AS (
 
(date_string IS NOT NULL) AND
 
(PARSE_DATE('%Y%m%d', date_string) = day_value)
);

WITH change_types AS (
SELECT pseudo_user_id,
  WithinDay
(user_info.last_active_timestamp_micros, EXPORT_DATE) AS user_activity,
  WithinDay
(user_info.user_first_touch_timestamp_micros, EXPORT_DATE) AS first_touch,
  SameDate
(user_info.first_purchase_date, EXPORT_DATE) as first_purchase,
 
(EXISTS (SELECT 1 FROM UNNEST(audiences) AS aud
           
WHERE WithinDay(aud.membership_start_timestamp_micros, EXPORT_DATE))) AS audience_add,
 
(EXISTS (SELECT 1 FROM UNNEST(audiences) AS aud
           
WHERE WithinDay(aud.membership_expiry_timestamp_micros, EXPORT_DATE))) AS audience_remove,
 
(EXISTS (SELECT 1 FROM UNNEST(user_properties) AS prop
           
WHERE WithinDay(prop.value.set_timestamp_micros, EXPORT_DATE))) AS user_property_change
FROM
 
-- The table suffix must match the date used to define EXPORT_DATE above.
 
`PROJECT_ID.analytics_PROPERTY_ID.pseudonymous_users_20230616`
)
SELECT
  user_activity
,
  first_touch
,
  first_purchase
,
  audience_add
,
  audience_remove
,
  user_property_change
,
 
-- This field will be true if there are no changes for the other change types.
 
NOT (user_activity OR first_touch OR audience_add OR audience_remove OR user_property_change) AS other_change,
  COUNT
(DISTINCT pseudo_user_id) pseudo_user_id_count
FROM change_types
GROUP BY 1,2,3,4,5,6,7;