تنطبق نماذج الطلبات في هذه الصفحة على تصدير بيانات المستخدمين في BigQuery للموقع إحصاءات Google تُنشئ عملية تصدير بيانات المستخدِمين في BigQuery جدولَين لكلّ منهما. اليوم:
- جدول
users_YYYYMMDD
، يحتوي على صف لكل رقم تعريف مستخدم بتغييره. - جدول
pseudonymous_users_YYYYMMDD
، والذي يحتوي على صف لكل معرّف البيانات بدون صاحبها الذي تغيّر..
ارجع إلى بيانات المستخدمين في BigQuery Export schema لمزيد من التفاصيل.
الاستعلام عن نطاق زمني معين
لطلب البحث في نطاق زمني محدّد من مجموعة بيانات تصدير بيانات المستخدمين في BigQuery، استخدِم
_TABLE_SUFFIX
زائف في عبارة WHERE
من استعلامك.
على سبيل المثال، يحتسب طلب البحث التالي عدد المستخدمين الفريدين الذين تم تعديلهم في الفترة بين 1 آب (أغسطس) 2023 و15 آب (أغسطس) 2023 مع تفاعل لمدة تصل إلى خمس دقائق على الأقل.
المستخدمون
-- Example: Query a specific date range for users meeting a lifetime engagement criterion.
--
-- Counts unique users that are in the BigQuery user-data exports for a specific date range and have
-- a lifetime engagement of 5 minutes or more.
SELECT
COUNT(DISTINCT user_id) AS user_count
FROM
-- Uses a table suffix wildcard to define the set of daily tables to query.
`PROJECT_ID.analytics_PROPERTY_ID.users_202308*`
WHERE
-- Filters to users updated between August 1 and August 15.
_TABLE_SUFFIX BETWEEN '01' AND '15'
-- Filters by users who have a lifetime engagement of 5 minutes or more.
AND user_ltv.engagement_time_millis >= 5 * 60 * 1000;
pseudonymous_users
-- Example: Query a specific date range for users meeting a lifetime engagement criterion.
--
-- Counts unique pseudonymous users that are in the BigQuery user-data exports for a specific date
-- range and have a lifetime engagement of 5 minutes or more.
SELECT
COUNT(DISTINCT pseudo_user_id) AS pseudo_user_count
FROM
-- Uses a table suffix wildcard to define the set of daily tables to query.
`PROJECT_ID.analytics_PROPERTY_ID.pseudonymous_users_202308*`
WHERE
-- Filters to users updated between August 1 and August 15.
_TABLE_SUFFIX BETWEEN '01' AND '15'
-- Filters by users who have a lifetime engagement of 5 minutes or more.
AND user_ltv.engagement_time_millis >= 5 * 60 * 1000;
في كل مثال يتم حصر البيانات في الفترة من 1 آب (أغسطس) 2023 إلى 15 آب (أغسطس) 2023 باستخدام الميزتين التاليتين:
- حرف البدل
202308*
في البندFROM
- شرط
_TABLE_SUFFIX
في عبارةWHERE
الذي يفلتر الجداول استنادًا إلى في جزء حرف البدل من اسم الجدول. بالنسبة إلى حرف البدل202308*
، جزء حرف البدل هو اليوم من الشهر.
يمكنك استخدام طريقة مماثلة للاستعلام عن بيانات متعددة أشهر. على سبيل المثال، بهدف من كانون الثاني (يناير) إلى تشرين الأول (أكتوبر) 2023، عدِّل طلب البحث ليتضمّن:
- حرف البدل
2023*
- شرط
_TABLE_SUFFIX
بقيمة_TABLE_SUFFIX BETWEEN '0101' AND '1031'
.
يمكنك أيضًا الاستعلام عن سنوات متعددة من البيانات. على سبيل المثال، لطلب البحث عن تشرين الأول (أكتوبر) 2022 حتى شباط (فبراير) 2023، عدِّل طلب البحث ليصبح:
- حرف البدل
202*
- شرط
_TABLE_SUFFIX
بقيمة_TABLE_SUFFIX BETWEEN '21001' AND '30331'
.
أرقام تعريف المستخدمين للتغييرات الأخيرة في خصائص المستخدمين
يوضح الاستعلام التالي كيفية استرداد user_id
وpseudo_user_id
من
جميع المستخدِمين الذين غيّروا مؤخرًا خاصيّة مستخدِم معيّنة.
المستخدمون
-- Example: Get the list of user_ids with recent changes to a specific user property.
DECLARE
UPDATE_LOWER_BOUND_MICROS INT64;
-- Replace timezone. List at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.
DECLARE
REPORTING_TIMEZONE STRING DEFAULT 'America/Los_Angeles';
-- Sets the variable for the earliest update time to include. This comes after setting
-- the REPORTING_TIMEZONE so this expression can use that variable.
SET UPDATE_LOWER_BOUND_MICROS = UNIX_MICROS(
TIMESTAMP_SUB(
TIMESTAMP_TRUNC(CURRENT_TIMESTAMP(), DAY, REPORTING_TIMEZONE),
INTERVAL 14 DAY));
-- Selects users with changes to a specific user property since the lower bound.
SELECT
users.user_id,
FORMAT_TIMESTAMP('%F %T',
TIMESTAMP_MICROS(
MAX(properties.value.set_timestamp_micros)),
REPORTING_TIMEZONE) AS max_set_timestamp
FROM
-- Uses a table prefix to scan all data for 2023. Update the prefix as needed to query a different
-- date range.
`PROJECT_ID.analytics_PROPERTY_ID.users_2023*` AS users,
users.user_properties properties
WHERE
properties.value.user_property_name = 'job_function'
AND properties.value.set_timestamp_micros >= UPDATE_LOWER_BOUND_MICROS
GROUP BY
1;
pseudonymous_users
-- Example: Get the list of pseudo_user_ids with recent changes to a specific user property.
DECLARE
UPDATE_LOWER_BOUND_MICROS INT64;
-- Replace timezone. List at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.
DECLARE
REPORTING_TIMEZONE STRING DEFAULT 'America/Los_Angeles';
-- Sets the variable for the earliest update time to include. This comes after setting
-- the REPORTING_TIMEZONE so this expression can use that variable.
SET UPDATE_LOWER_BOUND_MICROS = UNIX_MICROS(
TIMESTAMP_SUB(
TIMESTAMP_TRUNC(CURRENT_TIMESTAMP(), DAY, REPORTING_TIMEZONE),
INTERVAL 14 DAY));
-- Selects users with changes to a specific user property since the lower bound.
SELECT
users.pseudo_user_id,
FORMAT_TIMESTAMP('%F %T',
TIMESTAMP_MICROS(
MAX(properties.value.set_timestamp_micros)),
REPORTING_TIMEZONE) AS max_set_timestamp
FROM
-- Uses a table prefix to scan all data for 2023. Update the prefix as needed to query a different
-- date range.
`PROJECT_ID.analytics_PROPERTY_ID.pseudonymous_users_2023*` AS users,
users.user_properties properties
WHERE
properties.value.user_property_name = 'job_function'
AND properties.value.set_timestamp_micros >= UPDATE_LOWER_BOUND_MICROS
GROUP BY
1;
ملخّص التعديلات
استخدِم هذا الطلب لفهم سبب تضمين أو استبعاد عملية تصدير بيانات المستخدمين. فئات مختلفة من المستخدمين.
المستخدمون
-- Summarizes data by change type.
-- Defines the export date to query. This must match the table suffix in the FROM
-- clause below.
DECLARE EXPORT_DATE DATE DEFAULT DATE(2023,6,16);
-- Creates a temporary function that will return true if a timestamp (in micros) is for the same
-- date as the specified day value.
CREATE TEMP FUNCTION WithinDay(ts_micros INT64, day_value DATE)
AS (
(ts_micros IS NOT NULL) AND
-- Change the timezone to your property's reporting time zone.
-- List at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.
(DATE(TIMESTAMP_MICROS(ts_micros), 'America/Los_Angeles') = day_value)
);
-- Creates a temporary function that will return true if a date string in 'YYYYMMDD' format is
-- for the same date as the specified day value.
CREATE TEMP FUNCTION SameDate(date_string STRING, day_value DATE)
AS (
(date_string IS NOT NULL) AND
(PARSE_DATE('%Y%m%d', date_string) = day_value)
);
WITH change_types AS (
SELECT user_id,
WithinDay(user_info.last_active_timestamp_micros, EXPORT_DATE) AS user_activity,
WithinDay(user_info.user_first_touch_timestamp_micros, EXPORT_DATE) AS first_touch,
SameDate(user_info.first_purchase_date, EXPORT_DATE) as first_purchase,
(EXISTS (SELECT 1 FROM UNNEST(audiences) AS aud
WHERE WithinDay(aud.membership_start_timestamp_micros, EXPORT_DATE))) AS audience_add,
(EXISTS (SELECT 1 FROM UNNEST(audiences) AS aud
WHERE WithinDay(aud.membership_expiry_timestamp_micros, EXPORT_DATE))) AS audience_remove,
(EXISTS (SELECT 1 FROM UNNEST(user_properties) AS prop
WHERE WithinDay(prop.value.set_timestamp_micros, EXPORT_DATE))) AS user_property_change
FROM
-- The table suffix must match the date used to define EXPORT_DATE above.
`project_id.analytics_property_id.users_20230616`
)
SELECT
user_activity,
first_touch,
first_purchase,
audience_add,
audience_remove,
user_property_change,
-- This field will be true if there are no changes for the other change types.
NOT (user_activity OR first_touch OR audience_add OR audience_remove OR user_property_change) AS other_change,
COUNT(DISTINCT user_id) AS user_id_count
FROM change_types
GROUP BY 1,2,3,4,5,6,7;
pseudonymous_users
-- Summarizes data by change type.
-- Defines the export date to query. This must match the table suffix in the FROM
-- clause below.
DECLARE EXPORT_DATE DATE DEFAULT DATE(2023,6,16);
-- Creates a temporary function that will return true if a timestamp (in micros) is for the same
-- date as the specified day value.
CREATE TEMP FUNCTION WithinDay(ts_micros INT64, day_value DATE)
AS (
(ts_micros IS NOT NULL) AND
-- Change the timezone to your property's reporting time zone.
-- List at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.
(DATE(TIMESTAMP_MICROS(ts_micros), 'America/Los_Angeles') = day_value)
);
-- Creates a temporary function that will return true if a date string in 'YYYYMMDD' format is
-- for the same date as the specified day value.
CREATE TEMP FUNCTION SameDate(date_string STRING, day_value DATE)
AS (
(date_string IS NOT NULL) AND
(PARSE_DATE('%Y%m%d', date_string) = day_value)
);
WITH change_types AS (
SELECT pseudo_user_id,
WithinDay(user_info.last_active_timestamp_micros, EXPORT_DATE) AS user_activity,
WithinDay(user_info.user_first_touch_timestamp_micros, EXPORT_DATE) AS first_touch,
SameDate(user_info.first_purchase_date, EXPORT_DATE) as first_purchase,
(EXISTS (SELECT 1 FROM UNNEST(audiences) AS aud
WHERE WithinDay(aud.membership_start_timestamp_micros, EXPORT_DATE))) AS audience_add,
(EXISTS (SELECT 1 FROM UNNEST(audiences) AS aud
WHERE WithinDay(aud.membership_expiry_timestamp_micros, EXPORT_DATE))) AS audience_remove,
(EXISTS (SELECT 1 FROM UNNEST(user_properties) AS prop
WHERE WithinDay(prop.value.set_timestamp_micros, EXPORT_DATE))) AS user_property_change
FROM
-- The table suffix must match the date used to define EXPORT_DATE above.
`PROJECT_ID.analytics_PROPERTY_ID.pseudonymous_users_20230616`
)
SELECT
user_activity,
first_touch,
first_purchase,
audience_add,
audience_remove,
user_property_change,
-- This field will be true if there are no changes for the other change types.
NOT (user_activity OR first_touch OR audience_add OR audience_remove OR user_property_change) AS other_change,
COUNT(DISTINCT pseudo_user_id) pseudo_user_id_count
FROM change_types
GROUP BY 1,2,3,4,5,6,7;