World Settlement Footprint (WSF) 2015 adalah masker biner resolusi 10 m yang menguraikan luas permukiman manusia secara global yang diperoleh dengan menggunakan gambar multitemporal Landsat-8 dan Sentinel-1 tahun 2014-2015 (sekitar 217.000 dan 107.000 gambar telah diproses).
Dinamika temporal permukiman manusia dari waktu ke waktu secara
masuk akal berbeda dengan dinamika semua kelas informasi non-permukiman lainnya.
Oleh karena itu, mengingat semua gambar multitemporal yang tersedia di wilayah yang diminati dalam interval waktu yang dipilih, statistik temporal utama (yaitu, rata-rata temporal, minimum, maksimum, dll.) diekstrak untuk:
nilai hamburan balik asli
dalam kasus data radar; dan
indeks spektral yang berbeda (misalnya, indeks vegetasi, indeks bangunan, dll.) yang diperoleh setelah melakukan masking awan dalam kasus gambar optik.
Selanjutnya, berbagai skema klasifikasi berdasarkan Support Vector Machine (SVM) diterapkan secara terpisah pada fitur temporal optik dan radar, dan akhirnya, kedua output digabungkan dengan benar.
Untuk menilai secara kuantitatif akurasi dan keandalan tinggi lapisan, latihan validasi ekstensif telah dilakukan berkolaborasi dengan Google berdasarkan sejumlah besar sampel ground truth (yaitu, 900.000)
yang diberi label dengan interpretasi foto secara crowd-sourcing. Protokol yang kuat dan transparan secara statistik telah ditentukan dengan mengikuti praktik terbaik yang saat ini direkomendasikan dalam literatur.
Untuk mengetahui semua detail teknis, lihat
publikasi
Marconcini, M., Metz-Marconcini, A., Üreyen, S., Palacios-Lopez, D., Hanke, W., Bachofer, F.,
Zeidler, J., Esch, T., Gorelick, N., Kakarla, A., Paganini, M., Strano, E. (2020).
Menggambarkan tempat tinggal manusia, World Settlement Footprint 2015. Scientific Data, 7(1), 1-14.
doi:10.1038/s41597-020-00580-5
World Settlement Footprint (WSF) 2015 adalah masker biner resolusi 10 m yang menguraikan luas permukiman manusia secara global yang diperoleh melalui citra multitemporal Landsat-8 dan Sentinel-1 tahun 2014-2015 (yang masing-masing telah diproses sekitar 217.000 dan 107.000 adegan). Dinamika temporal permukiman manusia dari waktu ke waktu jelas berbeda …
[null,null,[],[[["\u003cp\u003eThe World Settlement Footprint (WSF) 2015 dataset provides a 10m resolution global map of human settlements, derived from 2014-2015 Landsat-8 and Sentinel-1 imagery.\u003c/p\u003e\n"],["\u003cp\u003eIt utilizes temporal dynamics and spectral indices to distinguish settlement areas from other land cover types with high accuracy, validated by extensive ground-truth samples.\u003c/p\u003e\n"],["\u003cp\u003eThe dataset is freely available under a CC0-1.0 license and can be accessed and analyzed through Google Earth Engine.\u003c/p\u003e\n"],["\u003cp\u003eCreated by the German Aerospace Center (DLR) in collaboration with Google, the WSF 2015 is detailed in a Scientific Data publication.\u003c/p\u003e\n"]]],["The World Settlement Footprint (WSF) 2015 dataset, provided by DLR, is a global 10m resolution binary mask of human settlements. It uses 2014-2015 Landsat-8 and Sentinel-1 imagery, processing approximately 217,000 and 107,000 scenes, respectively. Temporal statistics from radar and optical data, including spectral indices, are extracted. Support Vector Machines (SVMs) are applied to classify settlements, with outputs combined and validated using 900,000 ground-truth samples. The dataset is accessible via Earth Engine.\n"],null,["# World Settlement Footprint 2015\n\nDataset Availability\n: 2015-01-01T00:00:00Z--2016-01-01T00:00:00Z\n\nDataset Provider\n:\n\n\n [Deutsches Zentrum für Luft- und Raumfahrt (DLR)](https://www.dlr.de/)\n\nTags\n:\n[landcover](/earth-engine/datasets/tags/landcover) [landsat-derived](/earth-engine/datasets/tags/landsat-derived) [population](/earth-engine/datasets/tags/population) [sentinel1-derived](/earth-engine/datasets/tags/sentinel1-derived) [settlement](/earth-engine/datasets/tags/settlement) [urban](/earth-engine/datasets/tags/urban) \n\n#### Description\n\nThe World Settlement Footprint (WSF) 2015 is a 10m resolution binary mask\noutlining the extent of human settlements globally derived by means of\n2014-2015 multitemporal Landsat-8 and Sentinel-1 imagery (of which \\~217,000 and\n\\~107,000 scenes have been processed, respectively).\n\nThe temporal dynamics of human settlements over time are\nsensibly different than those of all other non-settlement information classes.\nHence, given all the multitemporal images available over a region of interest\nin the selected time interval, key temporal statistics (i.e., temporal mean,\nminimum, maximum, etc.) are extracted for:\n\n- the original backscattering value in the case of radar data; and\n- different spectral indices (e.g., vegetation index, built-up index, etc.) derived after performing cloud masking in the case of optical imagery.\n\nNext, different classification schemes based on Support\nVector Machines (SVMs) are separately applied to the optical and radar temporal\nfeatures, respectively, and, finally, the two outputs are properly combined\ntogether.\n\nTo quantitatively assess the high accuracy and reliability of the\nlayer, an extensive validation exercise has been carried out in collaboration\nwith Google based on a huge amount of ground-truth samples (i.e., 900,000)\nlabeled by crowd-sourcing photo-interpretation. A statistically\nrobust and transparent protocol has been defined following the state-of-the-art\npractices currently recommended in the literature.\n\nFor all technical details, please refer to\n[the publication](https://www.nature.com/articles/s41597-020-00580-5)\n\n### Bands\n\n**Bands**\n\n| Name | Min | Max | Pixel Size | Description |\n|--------------|-----|-----|------------|-------------------------|\n| `settlement` | 255 | 255 | 10 meters | A human settlement area |\n\n### Terms of Use\n\n**Terms of Use**\n\n[CC0-1.0](https://spdx.org/licenses/CC0-1.0.html)\n\n### Citations\n\nCitations:\n\n- Marconcini, M., Metz-Marconcini, A., Üreyen, S., Palacios-Lopez, D., Hanke, W., Bachofer, F.,\n Zeidler, J., Esch, T., Gorelick, N., Kakarla, A., Paganini, M., Strano, E. (2020).\n Outlining where humans live, the World Settlement Footprint 2015. Scientific Data, 7(1), 1-14.\n [doi:10.1038/s41597-020-00580-5](https://doi.org/10.1038/s41597-020-00580-5)\n\n### DOIs\n\n- \u003chttps://doi.org/10.1038/s41597-020-00580-5\u003e\n\n### Explore with Earth Engine\n\n| **Important:** Earth Engine is a platform for petabyte-scale scientific analysis and visualization of geospatial datasets, both for public benefit and for business and government users. Earth Engine is free to use for research, education, and nonprofit use. To get started, please [register for Earth Engine access.](https://console.cloud.google.com/earth-engine)\n\n### Code Editor (JavaScript)\n\n```javascript\nvar dataset = ee.Image('DLR/WSF/WSF2015/v1');\n\nvar opacity = 0.75;\nvar blackBackground = ee.Image(0);\nMap.addLayer(blackBackground, null, 'Black background', true, opacity);\n\nvar visualization = {\n min: 0,\n max: 255,\n};\nMap.addLayer(dataset, visualization, 'Human settlement areas');\n\nMap.setCenter(90.45, 23.7, 7);\n```\n[Open in Code Editor](https://code.earthengine.google.com/?scriptPath=Examples:Datasets/DLR/DLR_WSF_WSF2015_v1) \n[World Settlement Footprint 2015](/earth-engine/datasets/catalog/DLR_WSF_WSF2015_v1) \nThe World Settlement Footprint (WSF) 2015 is a 10m resolution binary mask outlining the extent of human settlements globally derived by means of 2014-2015 multitemporal Landsat-8 and Sentinel-1 imagery (of which \\~217,000 and \\~107,000 scenes have been processed, respectively). The temporal dynamics of human settlements over time are sensibly different ... \nDLR/WSF/WSF2015/v1, landcover,landsat-derived,population,sentinel1-derived,settlement,urban \n2015-01-01T00:00:00Z/2016-01-01T00:00:00Z \n-90 -180 90 180 \nGoogle Earth Engine \nhttps://developers.google.com/earth-engine/datasets\n\n- [https://doi.org/10.1038/s41597-020-00580-5](https://doi.org/https://www.dlr.de/)\n- [https://doi.org/10.1038/s41597-020-00580-5](https://doi.org/https://developers.google.com/earth-engine/datasets/catalog/DLR_WSF_WSF2015_v1)"]]