
- 資料集可用性
- 2001-01-01T00:00:00Z–2017-01-01T00:00:00Z
- 資料集來源
- iSDA
- 標記
說明
土壤深度 0-20 公分和 20-50 公分的可萃取鋁,預測平均值和標準差。
像素值必須使用 exp(x/10)-1
進行反向轉換。
土壤性質預測是由 Innovative Solutions for Decision Agriculture Ltd. (iSDA) 進行,採用機器學習技術搭配遙測資料,以及超過 10 萬個分析過的土壤樣本訓練集,以 30 公尺的像素大小進行預測。
詳情請參閱常見問題和技術資訊說明文件。如要提交問題或要求支援,請前往iSDAsoil 網站。
在叢林密布的區域 (通常位於中非),模型準確度較低,因此可能會出現帶狀 (條紋) 等構件。
頻帶
像素大小
30 公尺
頻帶
名稱 | 單位 | 最小值 | 最大值 | 像素大小 | 說明 |
---|---|---|---|---|---|
mean_0_20 |
ppm | 3 | 80 | 公尺 | 鋁,可萃取,預測平均值 (深度 0-20 公分) |
mean_20_50 |
ppm | 4 | 79 | 公尺 | 鋁,可萃取,預測平均值 (深度 20 至 50 公分) |
stdev_0_20 |
ppm | 1 | 53 | 公尺 | 鋁 (可萃取),0 到 20 公分深度的標準差 |
stdev_20_50 |
ppm | 1 | 51 | 公尺 | 可萃取鋁,深度 20 至 50 公分處的標準差 |
使用條款
使用條款
引用內容
Hengl, T.、Miller, M.A.E.、Križan, J. 等人。African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning.Sci Rep 11, 6130 (2021). doi:10.1038/s41598-021-85639-y
Hengl, T.、Miller, M.A.E.、Križan, J. 等人。African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning.Sci Rep 11, 6130 (2021). doi:10.1038/s41598-021-85639-y
DOI
使用 Earth Engine 探索
程式碼編輯器 (JavaScript)
var mean_0_20 = '<RasterSymbolizer>' + '<ColorMap type="ramp">' + '<ColorMapEntry color="#000004" label="0-21.2" opacity="1" quantity="31"/>' + '<ColorMapEntry color="#0C0927" label="21.2-35.6" opacity="1" quantity="36"/>' + '<ColorMapEntry color="#231151" label="35.6-53.6" opacity="1" quantity="40"/>' + '<ColorMapEntry color="#410F75" label="53.6-65.7" opacity="1" quantity="42"/>' + '<ColorMapEntry color="#5F187F" label="65.7-72.7" opacity="1" quantity="43"/>' + '<ColorMapEntry color="#7B2382" label="72.7-80.5" opacity="1" quantity="44"/>' + '<ColorMapEntry color="#982D80" label="80.5-89" opacity="1" quantity="45"/>' + '<ColorMapEntry color="#B63679" label="89-98.5" opacity="1" quantity="46"/>' + '<ColorMapEntry color="#D3436E" label="98.5-108.9" opacity="1" quantity="47"/>' + '<ColorMapEntry color="#EB5760" label="108.9-120.5" opacity="1" quantity="48"/>' + '<ColorMapEntry color="#F8765C" label="120.5-133.3" opacity="1" quantity="49"/>' + '<ColorMapEntry color="#FD9969" label="133.3-147.4" opacity="1" quantity="50"/>' + '<ColorMapEntry color="#FEBA80" label="147.4-163" opacity="1" quantity="51"/>' + '<ColorMapEntry color="#FDDC9E" label="163-199.3" opacity="1" quantity="53"/>' + '<ColorMapEntry color="#FCFDBF" label="199.3-1800" opacity="1" quantity="55"/>' + '</ColorMap>' + '<ContrastEnhancement/>' + '</RasterSymbolizer>'; var mean_20_50 = '<RasterSymbolizer>' + '<ColorMap type="ramp">' + '<ColorMapEntry color="#000004" label="0-21.2" opacity="1" quantity="31"/>' + '<ColorMapEntry color="#0C0927" label="21.2-35.6" opacity="1" quantity="36"/>' + '<ColorMapEntry color="#231151" label="35.6-53.6" opacity="1" quantity="40"/>' + '<ColorMapEntry color="#410F75" label="53.6-65.7" opacity="1" quantity="42"/>' + '<ColorMapEntry color="#5F187F" label="65.7-72.7" opacity="1" quantity="43"/>' + '<ColorMapEntry color="#7B2382" label="72.7-80.5" opacity="1" quantity="44"/>' + '<ColorMapEntry color="#982D80" label="80.5-89" opacity="1" quantity="45"/>' + '<ColorMapEntry color="#B63679" label="89-98.5" opacity="1" quantity="46"/>' + '<ColorMapEntry color="#D3436E" label="98.5-108.9" opacity="1" quantity="47"/>' + '<ColorMapEntry color="#EB5760" label="108.9-120.5" opacity="1" quantity="48"/>' + '<ColorMapEntry color="#F8765C" label="120.5-133.3" opacity="1" quantity="49"/>' + '<ColorMapEntry color="#FD9969" label="133.3-147.4" opacity="1" quantity="50"/>' + '<ColorMapEntry color="#FEBA80" label="147.4-163" opacity="1" quantity="51"/>' + '<ColorMapEntry color="#FDDC9E" label="163-199.3" opacity="1" quantity="53"/>' + '<ColorMapEntry color="#FCFDBF" label="199.3-1800" opacity="1" quantity="55"/>' + '</ColorMap>' + '<ContrastEnhancement/>' + '</RasterSymbolizer>'; var stdev_0_20 = '<RasterSymbolizer>' + '<ColorMap type="ramp">' + '<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="5"/>' + '<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="9"/>' + '<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="10"/>' + '<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="12"/>' + '<ColorMapEntry color="#440154" label="high" opacity="1" quantity="14"/>' + '</ColorMap>' + '<ContrastEnhancement/>' + '</RasterSymbolizer>'; var stdev_20_50 = '<RasterSymbolizer>' + '<ColorMap type="ramp">' + '<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="5"/>' + '<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="9"/>' + '<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="10"/>' + '<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="12"/>' + '<ColorMapEntry color="#440154" label="high" opacity="1" quantity="14"/>' + '</ColorMap>' + '<ContrastEnhancement/>' + '</RasterSymbolizer>'; Map.setCenter(25, -3, 2); var raw = ee.Image("ISDASOIL/Africa/v1/aluminium_extractable"); Map.addLayer( raw.select(0).sldStyle(mean_0_20), {}, "Aluminium, extractable, mean visualization, 0-20 cm"); Map.addLayer( raw.select(1).sldStyle(mean_20_50), {}, "Aluminium, extractable, mean visualization, 20-50 cm"); Map.addLayer( raw.select(2).sldStyle(stdev_0_20), {}, "Aluminium, extractable, stdev visualization, 0-20 cm"); Map.addLayer( raw.select(3).sldStyle(stdev_20_50), {}, "Aluminium, extractable, stdev visualization, 20-50 cm"); var converted = raw.divide(10).exp().subtract(1); Map.addLayer( converted.select(0), {min: 0, max: 100}, "Aluminium, extractable, mean, 0-20 cm");