iSDAsoil Bulk Density, <2mm Fraction
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
Disponibilidad del conjunto de datos
2001-01-01T00:00:00Z–2017-01-01T00:00:00Z
Proveedor de conjuntos de datos
iSDA
Fragmento de Earth Engine
ee.Image("ISDASOIL/Africa/v1/bulk_density")
open_in_new
Etiquetas
africa
isda
soil
densidad aparente
Descripción
Densidad aparente, fracción <2 mm a profundidades del suelo de 0 a 20 cm y de 20 a 50 cm, desviación estándar y media predichas.
Los valores de píxeles se deben transformar de nuevo con x/100
.
En las áreas de selva densa (generalmente en África central), la precisión del modelo es baja y, por lo tanto, se pueden observar artefactos como bandas (rayas).
Innovative Solutions for Decision Agriculture Ltd. (iSDA) realizó las predicciones de las propiedades del suelo con un tamaño de píxel de 30 m utilizando el aprendizaje automático junto con datos de detección remota y un conjunto de entrenamiento de más de 100,000 muestras de suelo analizadas.
Puedes encontrar más información en las preguntas frecuentes y la documentación de información técnica . Para enviar un problema o solicitar asistencia, visita el sitio de iSDAsoil .
Bandas
Tamaño de píxel
30 metros
Bandas
Nombre
Unidades
Mín.
Máx.
Tamaño de los píxeles
Descripción
mean_0_20
g/cm³
44
197
metros
Densidad aparente, fracción <2 mm, media prevista a una profundidad de 0 a 20 cm
mean_20_50
g/cm³
44
196
metros
Densidad aparente, fracción <2 mm, media predicha a una profundidad de 20 a 50 cm
stdev_0_20
g/cm³
0
92
metros
Densidad aparente, fracción <2 mm, desviación estándar a una profundidad de 0 a 20 cm
stdev_20_50
g/cm³
0
92
metros
Densidad aparente, fracción de <2 mm, desviación estándar a una profundidad de 20 a 50 cm
Condiciones de Uso
Condiciones de Uso
CC-BY-4.0
Citas
Hengl, T., Miller, M.A.E., Križan, J., et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning.
Sci Rep 11, 6130 (2021).
doi:10.1038/s41598-021-85639-y
Explora con Earth Engine
Importante:
Earth Engine es una plataforma para el análisis científico y la visualización de conjuntos de datos geoespaciales a escala de petabytes, tanto para el beneficio público como para los usuarios empresariales y gubernamentales.
Earth Engine se puede usar de forma gratuita para la investigación, la educación y el uso sin fines de lucro. Para comenzar, regístrate para obtener acceso a Earth Engine.
Editor de código (JavaScript)
var mean_0_20 =
'<RasterSymbolizer>' +
'<ColorMap type="ramp">' +
'<ColorMapEntry color="#00204D" label="0.8-1.05" opacity="1" quantity="105"/>' +
'<ColorMapEntry color="#002D6C" label="1.05-1.19" opacity="1" quantity="119"/>' +
'<ColorMapEntry color="#16396D" label="1.19-1.23" opacity="1" quantity="123"/>' +
'<ColorMapEntry color="#36476B" label="1.23-1.25" opacity="1" quantity="125"/>' +
'<ColorMapEntry color="#4B546C" label="1.25-1.28" opacity="1" quantity="128"/>' +
'<ColorMapEntry color="#5C616E" label="1.28-1.31" opacity="1" quantity="131"/>' +
'<ColorMapEntry color="#6C6E72" label="1.31-1.34" opacity="1" quantity="134"/>' +
'<ColorMapEntry color="#7C7B78" label="1.34-1.36" opacity="1" quantity="136"/>' +
'<ColorMapEntry color="#8E8A79" label="1.36-1.38" opacity="1" quantity="138"/>' +
'<ColorMapEntry color="#A09877" label="1.38-1.41" opacity="1" quantity="141"/>' +
'<ColorMapEntry color="#B3A772" label="1.41-1.43" opacity="1" quantity="143"/>' +
'<ColorMapEntry color="#C6B66B" label="1.43-1.45" opacity="1" quantity="145"/>' +
'<ColorMapEntry color="#DBC761" label="1.45-1.48" opacity="1" quantity="148"/>' +
'<ColorMapEntry color="#F0D852" label="1.48-1.51" opacity="1" quantity="151"/>' +
'<ColorMapEntry color="#FFEA46" label="1.51-1.85" opacity="1" quantity="154"/>' +
'</ColorMap>' +
'<ContrastEnhancement/>' +
'</RasterSymbolizer>' ;
var mean_20_50 =
'<RasterSymbolizer>' +
'<ColorMap type="ramp">' +
'<ColorMapEntry color="#00204D" label="0.8-1.05" opacity="1" quantity="105"/>' +
'<ColorMapEntry color="#002D6C" label="1.05-1.19" opacity="1" quantity="119"/>' +
'<ColorMapEntry color="#16396D" label="1.19-1.23" opacity="1" quantity="123"/>' +
'<ColorMapEntry color="#36476B" label="1.23-1.25" opacity="1" quantity="125"/>' +
'<ColorMapEntry color="#4B546C" label="1.25-1.28" opacity="1" quantity="128"/>' +
'<ColorMapEntry color="#5C616E" label="1.28-1.31" opacity="1" quantity="131"/>' +
'<ColorMapEntry color="#6C6E72" label="1.31-1.34" opacity="1" quantity="134"/>' +
'<ColorMapEntry color="#7C7B78" label="1.34-1.36" opacity="1" quantity="136"/>' +
'<ColorMapEntry color="#8E8A79" label="1.36-1.38" opacity="1" quantity="138"/>' +
'<ColorMapEntry color="#A09877" label="1.38-1.41" opacity="1" quantity="141"/>' +
'<ColorMapEntry color="#B3A772" label="1.41-1.43" opacity="1" quantity="143"/>' +
'<ColorMapEntry color="#C6B66B" label="1.43-1.45" opacity="1" quantity="145"/>' +
'<ColorMapEntry color="#DBC761" label="1.45-1.48" opacity="1" quantity="148"/>' +
'<ColorMapEntry color="#F0D852" label="1.48-1.51" opacity="1" quantity="151"/>' +
'<ColorMapEntry color="#FFEA46" label="1.51-1.85" opacity="1" quantity="154"/>' +
'</ColorMap>' +
'<ContrastEnhancement/>' +
'</RasterSymbolizer>' ;
var stdev_0_20 =
'<RasterSymbolizer>' +
'<ColorMap type="ramp">' +
'<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="2"/>' +
'<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="4"/>' +
'<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="5"/>' +
'<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="7"/>' +
'<ColorMapEntry color="#440154" label="high" opacity="1" quantity="9"/>' +
'</ColorMap>' +
'<ContrastEnhancement/>' +
'</RasterSymbolizer>' ;
var stdev_20_50 =
'<RasterSymbolizer>' +
'<ColorMap type="ramp">' +
'<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="2"/>' +
'<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="4"/>' +
'<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="5"/>' +
'<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="7"/>' +
'<ColorMapEntry color="#440154" label="high" opacity="1" quantity="9"/>' +
'</ColorMap>' +
'<ContrastEnhancement/>' +
'</RasterSymbolizer>' ;
var raw = ee . Image ( "ISDASOIL/Africa/v1/bulk_density" );
Map . addLayer (
raw . select ( 0 ). sldStyle ( mean_0_20 ), {},
"Bulk density, mean visualization, 0-20 cm" );
Map . addLayer (
raw . select ( 1 ). sldStyle ( mean_20_50 ), {},
"Bulk density, mean visualization, 20-50 cm" );
Map . addLayer (
raw . select ( 2 ). sldStyle ( stdev_0_20 ), {},
"Bulk density, stdev visualization, 0-20 cm" );
Map . addLayer (
raw . select ( 3 ). sldStyle ( stdev_20_50 ), {},
"Bulk density, stdev visualization, 20-50 cm" );
var converted = raw . divide ( 100 );
var visualization = { min : 1 , max : 1.5 };
Map . setCenter ( 25 , - 3 , 2 );
Map . addLayer ( converted . select ( 0 ), visualization , "Bulk density, mean, 0-20 cm" );
Abrir en el editor de código
[null,null,[],[[["\u003cp\u003eThis dataset provides soil bulk density data for Africa at 30-meter resolution, covering the period from 2001 to 2017.\u003c/p\u003e\n"],["\u003cp\u003eIt includes predicted mean and standard deviation of bulk density for soil depths of 0-20 cm and 20-50 cm.\u003c/p\u003e\n"],["\u003cp\u003eThe data is derived from machine learning models trained on over 100,000 soil samples and remote sensing data, with potential for lower accuracy in dense jungle areas.\u003c/p\u003e\n"],["\u003cp\u003ePixel values require back-transformation by dividing by 100 to obtain the actual bulk density in g/cm³.\u003c/p\u003e\n"],["\u003cp\u003eThe dataset is provided by Innovative Solutions for Decision Agriculture Ltd.(iSDA) under a CC-BY-4.0 license.\u003c/p\u003e\n"]]],[],null,["# iSDAsoil Bulk Density, <2mm Fraction\n\nDataset Availability\n: 2001-01-01T00:00:00Z--2017-01-01T00:00:00Z\n\nDataset Provider\n:\n\n\n [iSDA](https://isda-africa.com/)\n\nTags\n:\n [africa](/earth-engine/datasets/tags/africa) [isda](/earth-engine/datasets/tags/isda) [soil](/earth-engine/datasets/tags/soil) \nbulk-density \n\n#### Description\n\nBulk density, \\\u003c2mm fraction at soil depths of 0-20 cm and 20-50 cm,\npredicted mean and standard deviation.\n\nPixel values must be back-transformed with `x/100`.\n\nIn areas of dense jungle (generally over central Africa), model accuracy is\nlow and therefore artifacts such as banding (striping) might be seen.\n\nSoil property predictions were made by\n[Innovative Solutions for Decision Agriculture Ltd. (iSDA)](https://isda-africa.com/)\nat 30 m pixel size using machine learning coupled with remote sensing data\nand a training set of over 100,000 analyzed soil samples.\n\nFurther information can be found in the\n[FAQ](https://www.isda-africa.com/isdasoil/faq/) and\n[technical information documentation](https://www.isda-africa.com/isdasoil/technical-information/). To submit an issue or request support, please visit\n[the iSDAsoil site](https://isda-africa.com/isdasoil).\n\n### Bands\n\n\n**Pixel Size**\n\n30 meters\n\n**Bands**\n\n| Name | Units | Min | Max | Pixel Size | Description |\n|---------------|---------|-----|-----|------------|--------------------------------------------------------------------|\n| `mean_0_20` | g/cm\\^3 | 44 | 197 | meters | Bulk density, \\\u003c2mm fraction, predicted mean at 0-20 cm depth |\n| `mean_20_50` | g/cm\\^3 | 44 | 196 | meters | Bulk density, \\\u003c2mm fraction, predicted mean at 20-50 cm depth |\n| `stdev_0_20` | g/cm\\^3 | 0 | 92 | meters | Bulk density, \\\u003c2mm fraction, standard deviation at 0-20 cm depth |\n| `stdev_20_50` | g/cm\\^3 | 0 | 92 | meters | Bulk density, \\\u003c2mm fraction, standard deviation at 20-50 cm depth |\n\n### Terms of Use\n\n**Terms of Use**\n\n[CC-BY-4.0](https://spdx.org/licenses/CC-BY-4.0.html)\n\n### Citations\n\nCitations:\n\n- Hengl, T., Miller, M.A.E., Križan, J., et al. African soil properties and nutrients\n mapped at 30 m spatial resolution using two-scale ensemble machine learning.\n Sci Rep 11, 6130 (2021).\n [doi:10.1038/s41598-021-85639-y](https://doi.org/10.1038/s41598-021-85639-y)\n\n### Explore with Earth Engine\n\n| **Important:** Earth Engine is a platform for petabyte-scale scientific analysis and visualization of geospatial datasets, both for public benefit and for business and government users. Earth Engine is free to use for research, education, and nonprofit use. To get started, please [register for Earth Engine access.](https://console.cloud.google.com/earth-engine)\n\n### Code Editor (JavaScript)\n\n```javascript\nvar mean_0_20 =\n'\u003cRasterSymbolizer\u003e' +\n '\u003cColorMap type=\"ramp\"\u003e' +\n '\u003cColorMapEntry color=\"#00204D\" label=\"0.8-1.05\" opacity=\"1\" quantity=\"105\"/\u003e' +\n '\u003cColorMapEntry color=\"#002D6C\" label=\"1.05-1.19\" opacity=\"1\" quantity=\"119\"/\u003e' +\n '\u003cColorMapEntry color=\"#16396D\" label=\"1.19-1.23\" opacity=\"1\" quantity=\"123\"/\u003e' +\n '\u003cColorMapEntry color=\"#36476B\" label=\"1.23-1.25\" opacity=\"1\" quantity=\"125\"/\u003e' +\n '\u003cColorMapEntry color=\"#4B546C\" label=\"1.25-1.28\" opacity=\"1\" quantity=\"128\"/\u003e' +\n '\u003cColorMapEntry color=\"#5C616E\" label=\"1.28-1.31\" opacity=\"1\" quantity=\"131\"/\u003e' +\n '\u003cColorMapEntry color=\"#6C6E72\" label=\"1.31-1.34\" opacity=\"1\" quantity=\"134\"/\u003e' +\n '\u003cColorMapEntry color=\"#7C7B78\" label=\"1.34-1.36\" opacity=\"1\" quantity=\"136\"/\u003e' +\n '\u003cColorMapEntry color=\"#8E8A79\" label=\"1.36-1.38\" opacity=\"1\" quantity=\"138\"/\u003e' +\n '\u003cColorMapEntry color=\"#A09877\" label=\"1.38-1.41\" opacity=\"1\" quantity=\"141\"/\u003e' +\n '\u003cColorMapEntry color=\"#B3A772\" label=\"1.41-1.43\" opacity=\"1\" quantity=\"143\"/\u003e' +\n '\u003cColorMapEntry color=\"#C6B66B\" label=\"1.43-1.45\" opacity=\"1\" quantity=\"145\"/\u003e' +\n '\u003cColorMapEntry color=\"#DBC761\" label=\"1.45-1.48\" opacity=\"1\" quantity=\"148\"/\u003e' +\n '\u003cColorMapEntry color=\"#F0D852\" label=\"1.48-1.51\" opacity=\"1\" quantity=\"151\"/\u003e' +\n '\u003cColorMapEntry color=\"#FFEA46\" label=\"1.51-1.85\" opacity=\"1\" quantity=\"154\"/\u003e' +\n '\u003c/ColorMap\u003e' +\n '\u003cContrastEnhancement/\u003e' +\n'\u003c/RasterSymbolizer\u003e';\n\nvar mean_20_50 =\n'\u003cRasterSymbolizer\u003e' +\n '\u003cColorMap type=\"ramp\"\u003e' +\n '\u003cColorMapEntry color=\"#00204D\" label=\"0.8-1.05\" opacity=\"1\" quantity=\"105\"/\u003e' +\n '\u003cColorMapEntry color=\"#002D6C\" label=\"1.05-1.19\" opacity=\"1\" quantity=\"119\"/\u003e' +\n '\u003cColorMapEntry color=\"#16396D\" label=\"1.19-1.23\" opacity=\"1\" quantity=\"123\"/\u003e' +\n '\u003cColorMapEntry color=\"#36476B\" label=\"1.23-1.25\" opacity=\"1\" quantity=\"125\"/\u003e' +\n '\u003cColorMapEntry color=\"#4B546C\" label=\"1.25-1.28\" opacity=\"1\" quantity=\"128\"/\u003e' +\n '\u003cColorMapEntry color=\"#5C616E\" label=\"1.28-1.31\" opacity=\"1\" quantity=\"131\"/\u003e' +\n '\u003cColorMapEntry color=\"#6C6E72\" label=\"1.31-1.34\" opacity=\"1\" quantity=\"134\"/\u003e' +\n '\u003cColorMapEntry color=\"#7C7B78\" label=\"1.34-1.36\" opacity=\"1\" quantity=\"136\"/\u003e' +\n '\u003cColorMapEntry color=\"#8E8A79\" label=\"1.36-1.38\" opacity=\"1\" quantity=\"138\"/\u003e' +\n '\u003cColorMapEntry color=\"#A09877\" label=\"1.38-1.41\" opacity=\"1\" quantity=\"141\"/\u003e' +\n '\u003cColorMapEntry color=\"#B3A772\" label=\"1.41-1.43\" opacity=\"1\" quantity=\"143\"/\u003e' +\n '\u003cColorMapEntry color=\"#C6B66B\" label=\"1.43-1.45\" opacity=\"1\" quantity=\"145\"/\u003e' +\n '\u003cColorMapEntry color=\"#DBC761\" label=\"1.45-1.48\" opacity=\"1\" quantity=\"148\"/\u003e' +\n '\u003cColorMapEntry color=\"#F0D852\" label=\"1.48-1.51\" opacity=\"1\" quantity=\"151\"/\u003e' +\n '\u003cColorMapEntry color=\"#FFEA46\" label=\"1.51-1.85\" opacity=\"1\" quantity=\"154\"/\u003e' +\n '\u003c/ColorMap\u003e' +\n '\u003cContrastEnhancement/\u003e' +\n'\u003c/RasterSymbolizer\u003e';\n\nvar stdev_0_20 =\n'\u003cRasterSymbolizer\u003e' +\n '\u003cColorMap type=\"ramp\"\u003e' +\n '\u003cColorMapEntry color=\"#fde725\" label=\"low\" opacity=\"1\" quantity=\"2\"/\u003e' +\n '\u003cColorMapEntry color=\"#5dc962\" label=\" \" opacity=\"1\" quantity=\"4\"/\u003e' +\n '\u003cColorMapEntry color=\"#20908d\" label=\" \" opacity=\"1\" quantity=\"5\"/\u003e' +\n '\u003cColorMapEntry color=\"#3a528b\" label=\" \" opacity=\"1\" quantity=\"7\"/\u003e' +\n '\u003cColorMapEntry color=\"#440154\" label=\"high\" opacity=\"1\" quantity=\"9\"/\u003e' +\n '\u003c/ColorMap\u003e' +\n '\u003cContrastEnhancement/\u003e' +\n'\u003c/RasterSymbolizer\u003e';\n\nvar stdev_20_50 =\n'\u003cRasterSymbolizer\u003e' +\n '\u003cColorMap type=\"ramp\"\u003e' +\n '\u003cColorMapEntry color=\"#fde725\" label=\"low\" opacity=\"1\" quantity=\"2\"/\u003e' +\n '\u003cColorMapEntry color=\"#5dc962\" label=\" \" opacity=\"1\" quantity=\"4\"/\u003e' +\n '\u003cColorMapEntry color=\"#20908d\" label=\" \" opacity=\"1\" quantity=\"5\"/\u003e' +\n '\u003cColorMapEntry color=\"#3a528b\" label=\" \" opacity=\"1\" quantity=\"7\"/\u003e' +\n '\u003cColorMapEntry color=\"#440154\" label=\"high\" opacity=\"1\" quantity=\"9\"/\u003e' +\n '\u003c/ColorMap\u003e' +\n '\u003cContrastEnhancement/\u003e' +\n'\u003c/RasterSymbolizer\u003e';\n\nvar raw = ee.Image(\"ISDASOIL/Africa/v1/bulk_density\");\nMap.addLayer(\n raw.select(0).sldStyle(mean_0_20), {},\n \"Bulk density, mean visualization, 0-20 cm\");\nMap.addLayer(\n raw.select(1).sldStyle(mean_20_50), {},\n \"Bulk density, mean visualization, 20-50 cm\");\nMap.addLayer(\n raw.select(2).sldStyle(stdev_0_20), {},\n \"Bulk density, stdev visualization, 0-20 cm\");\nMap.addLayer(\n raw.select(3).sldStyle(stdev_20_50), {},\n \"Bulk density, stdev visualization, 20-50 cm\");\n\nvar converted = raw.divide(100);\n\nvar visualization = {min: 1, max: 1.5};\n\nMap.setCenter(25, -3, 2);\n\nMap.addLayer(converted.select(0), visualization, \"Bulk density, mean, 0-20 cm\");\n```\n[Open in Code Editor](https://code.earthengine.google.com/?scriptPath=Examples:Datasets/ISDASOIL/ISDASOIL_Africa_v1_bulk_density) \n[iSDAsoil Bulk Density, \\\u003c2mm Fraction](/earth-engine/datasets/catalog/ISDASOIL_Africa_v1_bulk_density) \nBulk density, \\\u003c2mm fraction at soil depths of 0-20 cm and 20-50 cm, predicted mean and standard deviation. Pixel values must be back-transformed with x/100. In areas of dense jungle (generally over central Africa), model accuracy is low and therefore artifacts such as banding (striping) might be seen. Soil property ... \nISDASOIL/Africa/v1/bulk_density, africa,isda,soil \n2001-01-01T00:00:00Z/2017-01-01T00:00:00Z \n-35.22 -31.46 37.98 57.08 \nGoogle Earth Engine \nhttps://developers.google.com/earth-engine/datasets\n\n- [](https://doi.org/https://isda-africa.com/)\n- [](https://doi.org/https://developers.google.com/earth-engine/datasets/catalog/ISDASOIL_Africa_v1_bulk_density)"]]