iSDAsoil Bulk Density, <2mm Fraction

ISDASOIL/Africa/v1/bulk_density
데이터 세트 사용 가능 기간
2001-01-01T00:00:00Z–2017-01-01T00:00:00Z
데이터 세트 제공업체
Earth Engine 스니펫
ee.Image("ISDASOIL/Africa/v1/bulk_density")
태그
africa isda soil
bulk-density

설명

토양 깊이 0~20cm 및 20~50cm에서 2mm 미만 비율의 벌크 밀도, 예측된 평균 및 표준 편차입니다.

픽셀 값은 x/100로 역변환해야 합니다.

밀림이 우거진 지역 (일반적으로 중앙 아프리카)에서는 모델 정확도가 낮으므로 밴딩 (줄무늬)과 같은 아티팩트가 표시될 수 있습니다.

토양 속성 예측은 Innovative Solutions for Decision Agriculture Ltd. (iSDA)에서 머신러닝과 원격 감지 데이터, 분석된 100,000개 이상의 토양 샘플의 학습 세트를 사용하여 30m 픽셀 크기로 이루어졌습니다.

자세한 내용은 FAQ기술 정보 문서를 참고하세요. 문제를 제출하거나 지원을 요청하려면 iSDAsoil 사이트를 방문하세요.

대역

픽셀 크기
30미터

대역

이름 단위 최소 최대 픽셀 크기 설명
mean_0_20 g/cm^3 44 197 미터

용적 밀도, 2mm 미만 비율, 0~20cm 깊이에서 예측된 평균

mean_20_50 g/cm^3 44 196 미터

밀도, 2mm 미만 비율, 20~50cm 깊이에서 예측된 평균

stdev_0_20 g/cm^3 0 92 미터

밀도, 2mm 미만 비율, 0~20cm 깊이의 표준 편차

stdev_20_50 g/cm^3 0 92 미터

밀도, 2mm 미만 비율, 20~50cm 깊이에서의 표준 편차

이용약관

이용약관

CC-BY-4.0

인용

인용:
  • Hengl, T., Miller, M.A.E., Kri&zcaron;an, J., et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci Rep 11, 6130 (2021). doi:10.1038/s41598-021-85639-y

Earth Engine으로 탐색하기

코드 편집기(JavaScript)

var mean_0_20 =
'<RasterSymbolizer>' +
 '<ColorMap type="ramp">' +
  '<ColorMapEntry color="#00204D" label="0.8-1.05" opacity="1" quantity="105"/>' +
  '<ColorMapEntry color="#002D6C" label="1.05-1.19" opacity="1" quantity="119"/>' +
  '<ColorMapEntry color="#16396D" label="1.19-1.23" opacity="1" quantity="123"/>' +
  '<ColorMapEntry color="#36476B" label="1.23-1.25" opacity="1" quantity="125"/>' +
  '<ColorMapEntry color="#4B546C" label="1.25-1.28" opacity="1" quantity="128"/>' +
  '<ColorMapEntry color="#5C616E" label="1.28-1.31" opacity="1" quantity="131"/>' +
  '<ColorMapEntry color="#6C6E72" label="1.31-1.34" opacity="1" quantity="134"/>' +
  '<ColorMapEntry color="#7C7B78" label="1.34-1.36" opacity="1" quantity="136"/>' +
  '<ColorMapEntry color="#8E8A79" label="1.36-1.38" opacity="1" quantity="138"/>' +
  '<ColorMapEntry color="#A09877" label="1.38-1.41" opacity="1" quantity="141"/>' +
  '<ColorMapEntry color="#B3A772" label="1.41-1.43" opacity="1" quantity="143"/>' +
  '<ColorMapEntry color="#C6B66B" label="1.43-1.45" opacity="1" quantity="145"/>' +
  '<ColorMapEntry color="#DBC761" label="1.45-1.48" opacity="1" quantity="148"/>' +
  '<ColorMapEntry color="#F0D852" label="1.48-1.51" opacity="1" quantity="151"/>' +
  '<ColorMapEntry color="#FFEA46" label="1.51-1.85" opacity="1" quantity="154"/>' +
 '</ColorMap>' +
 '<ContrastEnhancement/>' +
'</RasterSymbolizer>';

var mean_20_50 =
'<RasterSymbolizer>' +
 '<ColorMap type="ramp">' +
  '<ColorMapEntry color="#00204D" label="0.8-1.05" opacity="1" quantity="105"/>' +
  '<ColorMapEntry color="#002D6C" label="1.05-1.19" opacity="1" quantity="119"/>' +
  '<ColorMapEntry color="#16396D" label="1.19-1.23" opacity="1" quantity="123"/>' +
  '<ColorMapEntry color="#36476B" label="1.23-1.25" opacity="1" quantity="125"/>' +
  '<ColorMapEntry color="#4B546C" label="1.25-1.28" opacity="1" quantity="128"/>' +
  '<ColorMapEntry color="#5C616E" label="1.28-1.31" opacity="1" quantity="131"/>' +
  '<ColorMapEntry color="#6C6E72" label="1.31-1.34" opacity="1" quantity="134"/>' +
  '<ColorMapEntry color="#7C7B78" label="1.34-1.36" opacity="1" quantity="136"/>' +
  '<ColorMapEntry color="#8E8A79" label="1.36-1.38" opacity="1" quantity="138"/>' +
  '<ColorMapEntry color="#A09877" label="1.38-1.41" opacity="1" quantity="141"/>' +
  '<ColorMapEntry color="#B3A772" label="1.41-1.43" opacity="1" quantity="143"/>' +
  '<ColorMapEntry color="#C6B66B" label="1.43-1.45" opacity="1" quantity="145"/>' +
  '<ColorMapEntry color="#DBC761" label="1.45-1.48" opacity="1" quantity="148"/>' +
  '<ColorMapEntry color="#F0D852" label="1.48-1.51" opacity="1" quantity="151"/>' +
  '<ColorMapEntry color="#FFEA46" label="1.51-1.85" opacity="1" quantity="154"/>' +
 '</ColorMap>' +
 '<ContrastEnhancement/>' +
'</RasterSymbolizer>';

var stdev_0_20 =
'<RasterSymbolizer>' +
 '<ColorMap type="ramp">' +
  '<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="2"/>' +
  '<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="4"/>' +
  '<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="5"/>' +
  '<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="7"/>' +
  '<ColorMapEntry color="#440154" label="high" opacity="1" quantity="9"/>' +
 '</ColorMap>' +
 '<ContrastEnhancement/>' +
'</RasterSymbolizer>';

var stdev_20_50 =
'<RasterSymbolizer>' +
 '<ColorMap type="ramp">' +
  '<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="2"/>' +
  '<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="4"/>' +
  '<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="5"/>' +
  '<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="7"/>' +
  '<ColorMapEntry color="#440154" label="high" opacity="1" quantity="9"/>' +
 '</ColorMap>' +
 '<ContrastEnhancement/>' +
'</RasterSymbolizer>';

var raw = ee.Image("ISDASOIL/Africa/v1/bulk_density");
Map.addLayer(
    raw.select(0).sldStyle(mean_0_20), {},
    "Bulk density, mean visualization, 0-20 cm");
Map.addLayer(
    raw.select(1).sldStyle(mean_20_50), {},
    "Bulk density, mean visualization, 20-50 cm");
Map.addLayer(
    raw.select(2).sldStyle(stdev_0_20), {},
    "Bulk density, stdev visualization, 0-20 cm");
Map.addLayer(
    raw.select(3).sldStyle(stdev_20_50), {},
    "Bulk density, stdev visualization, 20-50 cm");

var converted = raw.divide(100);

var visualization = {min: 1, max: 1.5};

Map.setCenter(25, -3, 2);

Map.addLayer(converted.select(0), visualization, "Bulk density, mean, 0-20 cm");
코드 편집기에서 열기