iSDAsoil Bulk Density, <2mm Fraction
Оптимизируйте свои подборки
Сохраняйте и классифицируйте контент в соответствии со своими настройками.
Доступность набора данных 2001-01-01T00:00:00Z–2017-01-01T00:00:00Z Поставщик наборов данных iSDA Фрагмент Earth Engine ee.Image("ISDASOIL/Africa/v1/bulk_density")
open_in_new Теги плотность насыпной почвы в Африке по данным ISDA Описание Плотность насыпного материала, фракция <2 мм на глубине почвы 0-20 см и 20-50 см, прогнозируемое среднее значение и стандартное отклонение.
Значения пикселей необходимо преобразовать обратно с помощью x/100
.
В районах густых джунглей (как правило, в Центральной Африке) точность модели низкая, поэтому могут быть видны такие артефакты, как полосатость.
Прогнозы свойств почвы были сделаны компанией Innovative Solutions for Decision Agriculture Ltd. (iSDA) с размером пикселя 30 м с использованием машинного обучения в сочетании с данными дистанционного зондирования и обучающим набором из более чем 100 000 проанализированных образцов почвы.
Дополнительную информацию можно найти в разделе часто задаваемых вопросов и технической документации . Чтобы сообщить о проблеме или запросить поддержку, посетите сайт iSDAsoil .
Группы Размер пикселя 30 метров
Группы
Имя Единицы Мин. Макс Размер пикселя Описание mean_0_20
г/см^3 44 197 метров Насыпная плотность, фракция <2 мм, прогнозируемое среднее значение на глубине 0–20 см
mean_20_50
г/см^3 44 196 метров Насыпная плотность, фракция <2 мм, прогнозируемое среднее значение на глубине 20–50 см
stdev_0_20
г/см^3 0 92 метров Насыпная плотность, фракция <2 мм, стандартное отклонение на глубине 0–20 см
stdev_20_50
г/см^3 0 92 метров Насыпная плотность, фракция <2 мм, стандартное отклонение на глубине 20–50 см
Условия эксплуатации Условия эксплуатации
CC-BY-4.0
Цитаты Хенгль, Т., Миллер, М.А.Э., Крижан, Дж. и др. Свойства и питательные вещества африканских почв, картированные с пространственным разрешением 30 м с использованием двухмасштабного ансамблевого машинного обучения. Sci Rep 11, 6130 (2021). doi:10.1038/s41598-021-85639-y
Исследуйте с Earth Engine Важно: Earth Engine — это платформа для научного анализа и визуализации геопространственных данных петабайтного масштаба, предназначенная как для общественного пользования, так и для коммерческих и государственных организаций. Earth Engine можно использовать бесплатно в исследовательских, образовательных и некоммерческих целях. Чтобы начать работу, зарегистрируйтесь для получения доступа к Earth Engine. Редактор кода (JavaScript)
var mean_0_20 =
'<RasterSymbolizer>' +
'<ColorMap type="ramp">' +
'<ColorMapEntry color="#00204D" label="0.8-1.05" opacity="1" quantity="105"/>' +
'<ColorMapEntry color="#002D6C" label="1.05-1.19" opacity="1" quantity="119"/>' +
'<ColorMapEntry color="#16396D" label="1.19-1.23" opacity="1" quantity="123"/>' +
'<ColorMapEntry color="#36476B" label="1.23-1.25" opacity="1" quantity="125"/>' +
'<ColorMapEntry color="#4B546C" label="1.25-1.28" opacity="1" quantity="128"/>' +
'<ColorMapEntry color="#5C616E" label="1.28-1.31" opacity="1" quantity="131"/>' +
'<ColorMapEntry color="#6C6E72" label="1.31-1.34" opacity="1" quantity="134"/>' +
'<ColorMapEntry color="#7C7B78" label="1.34-1.36" opacity="1" quantity="136"/>' +
'<ColorMapEntry color="#8E8A79" label="1.36-1.38" opacity="1" quantity="138"/>' +
'<ColorMapEntry color="#A09877" label="1.38-1.41" opacity="1" quantity="141"/>' +
'<ColorMapEntry color="#B3A772" label="1.41-1.43" opacity="1" quantity="143"/>' +
'<ColorMapEntry color="#C6B66B" label="1.43-1.45" opacity="1" quantity="145"/>' +
'<ColorMapEntry color="#DBC761" label="1.45-1.48" opacity="1" quantity="148"/>' +
'<ColorMapEntry color="#F0D852" label="1.48-1.51" opacity="1" quantity="151"/>' +
'<ColorMapEntry color="#FFEA46" label="1.51-1.85" opacity="1" quantity="154"/>' +
'</ColorMap>' +
'<ContrastEnhancement/>' +
'</RasterSymbolizer>' ;
var mean_20_50 =
'<RasterSymbolizer>' +
'<ColorMap type="ramp">' +
'<ColorMapEntry color="#00204D" label="0.8-1.05" opacity="1" quantity="105"/>' +
'<ColorMapEntry color="#002D6C" label="1.05-1.19" opacity="1" quantity="119"/>' +
'<ColorMapEntry color="#16396D" label="1.19-1.23" opacity="1" quantity="123"/>' +
'<ColorMapEntry color="#36476B" label="1.23-1.25" opacity="1" quantity="125"/>' +
'<ColorMapEntry color="#4B546C" label="1.25-1.28" opacity="1" quantity="128"/>' +
'<ColorMapEntry color="#5C616E" label="1.28-1.31" opacity="1" quantity="131"/>' +
'<ColorMapEntry color="#6C6E72" label="1.31-1.34" opacity="1" quantity="134"/>' +
'<ColorMapEntry color="#7C7B78" label="1.34-1.36" opacity="1" quantity="136"/>' +
'<ColorMapEntry color="#8E8A79" label="1.36-1.38" opacity="1" quantity="138"/>' +
'<ColorMapEntry color="#A09877" label="1.38-1.41" opacity="1" quantity="141"/>' +
'<ColorMapEntry color="#B3A772" label="1.41-1.43" opacity="1" quantity="143"/>' +
'<ColorMapEntry color="#C6B66B" label="1.43-1.45" opacity="1" quantity="145"/>' +
'<ColorMapEntry color="#DBC761" label="1.45-1.48" opacity="1" quantity="148"/>' +
'<ColorMapEntry color="#F0D852" label="1.48-1.51" opacity="1" quantity="151"/>' +
'<ColorMapEntry color="#FFEA46" label="1.51-1.85" opacity="1" quantity="154"/>' +
'</ColorMap>' +
'<ContrastEnhancement/>' +
'</RasterSymbolizer>' ;
var stdev_0_20 =
'<RasterSymbolizer>' +
'<ColorMap type="ramp">' +
'<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="2"/>' +
'<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="4"/>' +
'<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="5"/>' +
'<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="7"/>' +
'<ColorMapEntry color="#440154" label="high" opacity="1" quantity="9"/>' +
'</ColorMap>' +
'<ContrastEnhancement/>' +
'</RasterSymbolizer>' ;
var stdev_20_50 =
'<RasterSymbolizer>' +
'<ColorMap type="ramp">' +
'<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="2"/>' +
'<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="4"/>' +
'<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="5"/>' +
'<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="7"/>' +
'<ColorMapEntry color="#440154" label="high" opacity="1" quantity="9"/>' +
'</ColorMap>' +
'<ContrastEnhancement/>' +
'</RasterSymbolizer>' ;
var raw = ee . Image ( "ISDASOIL/Africa/v1/bulk_density" );
Map . addLayer (
raw . select ( 0 ). sldStyle ( mean_0_20 ), {},
"Bulk density, mean visualization, 0-20 cm" );
Map . addLayer (
raw . select ( 1 ). sldStyle ( mean_20_50 ), {},
"Bulk density, mean visualization, 20-50 cm" );
Map . addLayer (
raw . select ( 2 ). sldStyle ( stdev_0_20 ), {},
"Bulk density, stdev visualization, 0-20 cm" );
Map . addLayer (
raw . select ( 3 ). sldStyle ( stdev_20_50 ), {},
"Bulk density, stdev visualization, 20-50 cm" );
var converted = raw . divide ( 100 );
var visualization = { min : 1 , max : 1.5 };
Map . setCenter ( 25 , - 3 , 2 );
Map . addLayer ( converted . select ( 0 ), visualization , "Bulk density, mean, 0-20 cm" ); Открыть в редакторе кода
[null,null,[],[[["\u003cp\u003eThis dataset provides soil bulk density data for Africa at 30-meter resolution, covering the period from 2001 to 2017.\u003c/p\u003e\n"],["\u003cp\u003eIt includes predicted mean and standard deviation of bulk density for soil depths of 0-20 cm and 20-50 cm.\u003c/p\u003e\n"],["\u003cp\u003eThe data is derived from machine learning models trained on over 100,000 soil samples and remote sensing data, with potential for lower accuracy in dense jungle areas.\u003c/p\u003e\n"],["\u003cp\u003ePixel values require back-transformation by dividing by 100 to obtain the actual bulk density in g/cm³.\u003c/p\u003e\n"],["\u003cp\u003eThe dataset is provided by Innovative Solutions for Decision Agriculture Ltd.(iSDA) under a CC-BY-4.0 license.\u003c/p\u003e\n"]]],[],null,["# iSDAsoil Bulk Density, <2mm Fraction\n\nDataset Availability\n: 2001-01-01T00:00:00Z--2017-01-01T00:00:00Z\n\nDataset Provider\n:\n\n\n [iSDA](https://isda-africa.com/)\n\nTags\n:\n [africa](/earth-engine/datasets/tags/africa) [isda](/earth-engine/datasets/tags/isda) [soil](/earth-engine/datasets/tags/soil) \nbulk-density \n\n#### Description\n\nBulk density, \\\u003c2mm fraction at soil depths of 0-20 cm and 20-50 cm,\npredicted mean and standard deviation.\n\nPixel values must be back-transformed with `x/100`.\n\nIn areas of dense jungle (generally over central Africa), model accuracy is\nlow and therefore artifacts such as banding (striping) might be seen.\n\nSoil property predictions were made by\n[Innovative Solutions for Decision Agriculture Ltd. (iSDA)](https://isda-africa.com/)\nat 30 m pixel size using machine learning coupled with remote sensing data\nand a training set of over 100,000 analyzed soil samples.\n\nFurther information can be found in the\n[FAQ](https://www.isda-africa.com/isdasoil/faq/) and\n[technical information documentation](https://www.isda-africa.com/isdasoil/technical-information/). To submit an issue or request support, please visit\n[the iSDAsoil site](https://isda-africa.com/isdasoil).\n\n### Bands\n\n\n**Pixel Size**\n\n30 meters\n\n**Bands**\n\n| Name | Units | Min | Max | Pixel Size | Description |\n|---------------|---------|-----|-----|------------|--------------------------------------------------------------------|\n| `mean_0_20` | g/cm\\^3 | 44 | 197 | meters | Bulk density, \\\u003c2mm fraction, predicted mean at 0-20 cm depth |\n| `mean_20_50` | g/cm\\^3 | 44 | 196 | meters | Bulk density, \\\u003c2mm fraction, predicted mean at 20-50 cm depth |\n| `stdev_0_20` | g/cm\\^3 | 0 | 92 | meters | Bulk density, \\\u003c2mm fraction, standard deviation at 0-20 cm depth |\n| `stdev_20_50` | g/cm\\^3 | 0 | 92 | meters | Bulk density, \\\u003c2mm fraction, standard deviation at 20-50 cm depth |\n\n### Terms of Use\n\n**Terms of Use**\n\n[CC-BY-4.0](https://spdx.org/licenses/CC-BY-4.0.html)\n\n### Citations\n\nCitations:\n\n- Hengl, T., Miller, M.A.E., Križan, J., et al. African soil properties and nutrients\n mapped at 30 m spatial resolution using two-scale ensemble machine learning.\n Sci Rep 11, 6130 (2021).\n [doi:10.1038/s41598-021-85639-y](https://doi.org/10.1038/s41598-021-85639-y)\n\n### Explore with Earth Engine\n\n| **Important:** Earth Engine is a platform for petabyte-scale scientific analysis and visualization of geospatial datasets, both for public benefit and for business and government users. Earth Engine is free to use for research, education, and nonprofit use. To get started, please [register for Earth Engine access.](https://console.cloud.google.com/earth-engine)\n\n### Code Editor (JavaScript)\n\n```javascript\nvar mean_0_20 =\n'\u003cRasterSymbolizer\u003e' +\n '\u003cColorMap type=\"ramp\"\u003e' +\n '\u003cColorMapEntry color=\"#00204D\" label=\"0.8-1.05\" opacity=\"1\" quantity=\"105\"/\u003e' +\n '\u003cColorMapEntry color=\"#002D6C\" label=\"1.05-1.19\" opacity=\"1\" quantity=\"119\"/\u003e' +\n '\u003cColorMapEntry color=\"#16396D\" label=\"1.19-1.23\" opacity=\"1\" quantity=\"123\"/\u003e' +\n '\u003cColorMapEntry color=\"#36476B\" label=\"1.23-1.25\" opacity=\"1\" quantity=\"125\"/\u003e' +\n '\u003cColorMapEntry color=\"#4B546C\" label=\"1.25-1.28\" opacity=\"1\" quantity=\"128\"/\u003e' +\n '\u003cColorMapEntry color=\"#5C616E\" label=\"1.28-1.31\" opacity=\"1\" quantity=\"131\"/\u003e' +\n '\u003cColorMapEntry color=\"#6C6E72\" label=\"1.31-1.34\" opacity=\"1\" quantity=\"134\"/\u003e' +\n '\u003cColorMapEntry color=\"#7C7B78\" label=\"1.34-1.36\" opacity=\"1\" quantity=\"136\"/\u003e' +\n '\u003cColorMapEntry color=\"#8E8A79\" label=\"1.36-1.38\" opacity=\"1\" quantity=\"138\"/\u003e' +\n '\u003cColorMapEntry color=\"#A09877\" label=\"1.38-1.41\" opacity=\"1\" quantity=\"141\"/\u003e' +\n '\u003cColorMapEntry color=\"#B3A772\" label=\"1.41-1.43\" opacity=\"1\" quantity=\"143\"/\u003e' +\n '\u003cColorMapEntry color=\"#C6B66B\" label=\"1.43-1.45\" opacity=\"1\" quantity=\"145\"/\u003e' +\n '\u003cColorMapEntry color=\"#DBC761\" label=\"1.45-1.48\" opacity=\"1\" quantity=\"148\"/\u003e' +\n '\u003cColorMapEntry color=\"#F0D852\" label=\"1.48-1.51\" opacity=\"1\" quantity=\"151\"/\u003e' +\n '\u003cColorMapEntry color=\"#FFEA46\" label=\"1.51-1.85\" opacity=\"1\" quantity=\"154\"/\u003e' +\n '\u003c/ColorMap\u003e' +\n '\u003cContrastEnhancement/\u003e' +\n'\u003c/RasterSymbolizer\u003e';\n\nvar mean_20_50 =\n'\u003cRasterSymbolizer\u003e' +\n '\u003cColorMap type=\"ramp\"\u003e' +\n '\u003cColorMapEntry color=\"#00204D\" label=\"0.8-1.05\" opacity=\"1\" quantity=\"105\"/\u003e' +\n '\u003cColorMapEntry color=\"#002D6C\" label=\"1.05-1.19\" opacity=\"1\" quantity=\"119\"/\u003e' +\n '\u003cColorMapEntry color=\"#16396D\" label=\"1.19-1.23\" opacity=\"1\" quantity=\"123\"/\u003e' +\n '\u003cColorMapEntry color=\"#36476B\" label=\"1.23-1.25\" opacity=\"1\" quantity=\"125\"/\u003e' +\n '\u003cColorMapEntry color=\"#4B546C\" label=\"1.25-1.28\" opacity=\"1\" quantity=\"128\"/\u003e' +\n '\u003cColorMapEntry color=\"#5C616E\" label=\"1.28-1.31\" opacity=\"1\" quantity=\"131\"/\u003e' +\n '\u003cColorMapEntry color=\"#6C6E72\" label=\"1.31-1.34\" opacity=\"1\" quantity=\"134\"/\u003e' +\n '\u003cColorMapEntry color=\"#7C7B78\" label=\"1.34-1.36\" opacity=\"1\" quantity=\"136\"/\u003e' +\n '\u003cColorMapEntry color=\"#8E8A79\" label=\"1.36-1.38\" opacity=\"1\" quantity=\"138\"/\u003e' +\n '\u003cColorMapEntry color=\"#A09877\" label=\"1.38-1.41\" opacity=\"1\" quantity=\"141\"/\u003e' +\n '\u003cColorMapEntry color=\"#B3A772\" label=\"1.41-1.43\" opacity=\"1\" quantity=\"143\"/\u003e' +\n '\u003cColorMapEntry color=\"#C6B66B\" label=\"1.43-1.45\" opacity=\"1\" quantity=\"145\"/\u003e' +\n '\u003cColorMapEntry color=\"#DBC761\" label=\"1.45-1.48\" opacity=\"1\" quantity=\"148\"/\u003e' +\n '\u003cColorMapEntry color=\"#F0D852\" label=\"1.48-1.51\" opacity=\"1\" quantity=\"151\"/\u003e' +\n '\u003cColorMapEntry color=\"#FFEA46\" label=\"1.51-1.85\" opacity=\"1\" quantity=\"154\"/\u003e' +\n '\u003c/ColorMap\u003e' +\n '\u003cContrastEnhancement/\u003e' +\n'\u003c/RasterSymbolizer\u003e';\n\nvar stdev_0_20 =\n'\u003cRasterSymbolizer\u003e' +\n '\u003cColorMap type=\"ramp\"\u003e' +\n '\u003cColorMapEntry color=\"#fde725\" label=\"low\" opacity=\"1\" quantity=\"2\"/\u003e' +\n '\u003cColorMapEntry color=\"#5dc962\" label=\" \" opacity=\"1\" quantity=\"4\"/\u003e' +\n '\u003cColorMapEntry color=\"#20908d\" label=\" \" opacity=\"1\" quantity=\"5\"/\u003e' +\n '\u003cColorMapEntry color=\"#3a528b\" label=\" \" opacity=\"1\" quantity=\"7\"/\u003e' +\n '\u003cColorMapEntry color=\"#440154\" label=\"high\" opacity=\"1\" quantity=\"9\"/\u003e' +\n '\u003c/ColorMap\u003e' +\n '\u003cContrastEnhancement/\u003e' +\n'\u003c/RasterSymbolizer\u003e';\n\nvar stdev_20_50 =\n'\u003cRasterSymbolizer\u003e' +\n '\u003cColorMap type=\"ramp\"\u003e' +\n '\u003cColorMapEntry color=\"#fde725\" label=\"low\" opacity=\"1\" quantity=\"2\"/\u003e' +\n '\u003cColorMapEntry color=\"#5dc962\" label=\" \" opacity=\"1\" quantity=\"4\"/\u003e' +\n '\u003cColorMapEntry color=\"#20908d\" label=\" \" opacity=\"1\" quantity=\"5\"/\u003e' +\n '\u003cColorMapEntry color=\"#3a528b\" label=\" \" opacity=\"1\" quantity=\"7\"/\u003e' +\n '\u003cColorMapEntry color=\"#440154\" label=\"high\" opacity=\"1\" quantity=\"9\"/\u003e' +\n '\u003c/ColorMap\u003e' +\n '\u003cContrastEnhancement/\u003e' +\n'\u003c/RasterSymbolizer\u003e';\n\nvar raw = ee.Image(\"ISDASOIL/Africa/v1/bulk_density\");\nMap.addLayer(\n raw.select(0).sldStyle(mean_0_20), {},\n \"Bulk density, mean visualization, 0-20 cm\");\nMap.addLayer(\n raw.select(1).sldStyle(mean_20_50), {},\n \"Bulk density, mean visualization, 20-50 cm\");\nMap.addLayer(\n raw.select(2).sldStyle(stdev_0_20), {},\n \"Bulk density, stdev visualization, 0-20 cm\");\nMap.addLayer(\n raw.select(3).sldStyle(stdev_20_50), {},\n \"Bulk density, stdev visualization, 20-50 cm\");\n\nvar converted = raw.divide(100);\n\nvar visualization = {min: 1, max: 1.5};\n\nMap.setCenter(25, -3, 2);\n\nMap.addLayer(converted.select(0), visualization, \"Bulk density, mean, 0-20 cm\");\n```\n[Open in Code Editor](https://code.earthengine.google.com/?scriptPath=Examples:Datasets/ISDASOIL/ISDASOIL_Africa_v1_bulk_density) \n[iSDAsoil Bulk Density, \\\u003c2mm Fraction](/earth-engine/datasets/catalog/ISDASOIL_Africa_v1_bulk_density) \nBulk density, \\\u003c2mm fraction at soil depths of 0-20 cm and 20-50 cm, predicted mean and standard deviation. Pixel values must be back-transformed with x/100. In areas of dense jungle (generally over central Africa), model accuracy is low and therefore artifacts such as banding (striping) might be seen. Soil property ... \nISDASOIL/Africa/v1/bulk_density, africa,isda,soil \n2001-01-01T00:00:00Z/2017-01-01T00:00:00Z \n-35.22 -31.46 37.98 57.08 \nGoogle Earth Engine \nhttps://developers.google.com/earth-engine/datasets\n\n- [](https://doi.org/https://isda-africa.com/)\n- [](https://doi.org/https://developers.google.com/earth-engine/datasets/catalog/ISDASOIL_Africa_v1_bulk_density)"]]