iSDAsoil Extractable Calcium
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
Disponibilidad del conjunto de datos
2001-01-01T00:00:00Z–2017-01-01T00:00:00Z
Proveedor de conjuntos de datos
iSDA
Fragmento de Earth Engine
ee.Image("ISDASOIL/Africa/v1/calcium_extractable")
open_in_new
Etiquetas
africa
isda
soil
calcio
Descripción
Calcio extraíble en profundidades del suelo de 0 a 20 cm y de 20 a 50 cm, media y desviación estándar previstas.
Los valores de píxeles se deben transformar de nuevo con exp(x/10)-1
.
En las áreas de selva densa (generalmente en África central), la precisión del modelo es baja y, por lo tanto, se pueden observar artefactos como bandas (rayas).
Innovative Solutions for Decision Agriculture Ltd. (iSDA) realizó las predicciones de las propiedades del suelo con un tamaño de píxel de 30 m utilizando el aprendizaje automático junto con datos de detección remota y un conjunto de entrenamiento de más de 100,000 muestras de suelo analizadas.
Puedes encontrar más información en las preguntas frecuentes y la documentación de información técnica . Para enviar un problema o solicitar asistencia, visita el sitio de iSDAsoil .
Bandas
Tamaño de píxel
30 metros
Bandas
Nombre
Unidades
Mín.
Máx.
Tamaño de los píxeles
Descripción
mean_0_20
ppm
20
100
metros
Calcio, extractable, media prevista a una profundidad de 0 a 20 cm
mean_20_50
ppm
14
100
metros
Calcio, extractable, media prevista a una profundidad de 20 a 50 cm
stdev_0_20
ppm
0
62
metros
Calcio, extraíble, desviación estándar a una profundidad de 0 a 20 cm
stdev_20_50
ppm
0
63
metros
Calcio, extractable, desviación estándar a una profundidad de 20 a 50 cm
Condiciones de Uso
Condiciones de Uso
CC-BY-4.0
Citas
Hengl, T., Miller, M.A.E., Križan, J., et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning.
Sci Rep 11, 6130 (2021).
doi:10.1038/s41598-021-85639-y
Explora con Earth Engine
Importante:
Earth Engine es una plataforma para el análisis científico y la visualización de conjuntos de datos geoespaciales a escala de petabytes, tanto para el beneficio público como para los usuarios empresariales y gubernamentales.
Earth Engine se puede usar de forma gratuita para la investigación, la educación y el uso sin fines de lucro. Para comenzar, regístrate para obtener acceso a Earth Engine.
Editor de código (JavaScript)
var mean_0_20 =
'<RasterSymbolizer>' +
'<ColorMap type="ramp">' +
'<ColorMapEntry color="#0D0887" label="0-65.7" opacity="1" quantity="42"/>' +
'<ColorMapEntry color="#350498" label="65.7-120.5" opacity="1" quantity="48"/>' +
'<ColorMapEntry color="#5402A3" label="120.5-163" opacity="1" quantity="51"/>' +
'<ColorMapEntry color="#7000A8" label="163-199.3" opacity="1" quantity="53"/>' +
'<ColorMapEntry color="#8B0AA5" label="199.3-269.4" opacity="1" quantity="56"/>' +
'<ColorMapEntry color="#A31E9A" label="269.4-329.3" opacity="1" quantity="58"/>' +
'<ColorMapEntry color="#B93289" label="329.3-402.4" opacity="1" quantity="60"/>' +
'<ColorMapEntry color="#CC4678" label="402.4-491.7" opacity="1" quantity="62"/>' +
'<ColorMapEntry color="#DB5C68" label="491.7-600.8" opacity="1" quantity="64"/>' +
'<ColorMapEntry color="#E97158" label="600.8-664.1" opacity="1" quantity="65"/>' +
'<ColorMapEntry color="#F48849" label="664.1-811.4" opacity="1" quantity="67"/>' +
'<ColorMapEntry color="#FBA139" label="811.4-896.8" opacity="1" quantity="68"/>' +
'<ColorMapEntry color="#FEBC2A" label="896.8-1095.6" opacity="1" quantity="70"/>' +
'<ColorMapEntry color="#FADA24" label="1095.6-1479.3" opacity="1" quantity="73"/>' +
'<ColorMapEntry color="#F0F921" label="1479.3-12000" opacity="1" quantity="77"/>' +
'</ColorMap>' +
'<ContrastEnhancement/>' +
'</RasterSymbolizer>' ;
var mean_20_50 =
'<RasterSymbolizer>' +
'<ColorMap type="ramp">' +
'<ColorMapEntry color="#0D0887" label="0-65.7" opacity="1" quantity="42"/>' +
'<ColorMapEntry color="#350498" label="65.7-120.5" opacity="1" quantity="48"/>' +
'<ColorMapEntry color="#5402A3" label="120.5-163" opacity="1" quantity="51"/>' +
'<ColorMapEntry color="#7000A8" label="163-199.3" opacity="1" quantity="53"/>' +
'<ColorMapEntry color="#8B0AA5" label="199.3-269.4" opacity="1" quantity="56"/>' +
'<ColorMapEntry color="#A31E9A" label="269.4-329.3" opacity="1" quantity="58"/>' +
'<ColorMapEntry color="#B93289" label="329.3-402.4" opacity="1" quantity="60"/>' +
'<ColorMapEntry color="#CC4678" label="402.4-491.7" opacity="1" quantity="62"/>' +
'<ColorMapEntry color="#DB5C68" label="491.7-600.8" opacity="1" quantity="64"/>' +
'<ColorMapEntry color="#E97158" label="600.8-664.1" opacity="1" quantity="65"/>' +
'<ColorMapEntry color="#F48849" label="664.1-811.4" opacity="1" quantity="67"/>' +
'<ColorMapEntry color="#FBA139" label="811.4-896.8" opacity="1" quantity="68"/>' +
'<ColorMapEntry color="#FEBC2A" label="896.8-1095.6" opacity="1" quantity="70"/>' +
'<ColorMapEntry color="#FADA24" label="1095.6-1479.3" opacity="1" quantity="73"/>' +
'<ColorMapEntry color="#F0F921" label="1479.3-12000" opacity="1" quantity="77"/>' +
'</ColorMap>' +
'<ContrastEnhancement/>' +
'</RasterSymbolizer>' ;
var stdev_0_20 =
'<RasterSymbolizer>' +
'<ColorMap type="ramp">' +
'<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="1"/>' +
'<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="2"/>' +
'<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="3"/>' +
'<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="4"/>' +
'<ColorMapEntry color="#440154" label="high" opacity="1" quantity="5"/>' +
'</ColorMap>' +
'<ContrastEnhancement/>' +
'</RasterSymbolizer>' ;
var stdev_20_50 =
'<RasterSymbolizer>' +
'<ColorMap type="ramp">' +
'<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="1"/>' +
'<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="2"/>' +
'<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="3"/>' +
'<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="4"/>' +
'<ColorMapEntry color="#440154" label="high" opacity="1" quantity="5"/>' +
'</ColorMap>' +
'<ContrastEnhancement/>' +
'</RasterSymbolizer>' ;
var raw = ee . Image ( "ISDASOIL/Africa/v1/calcium_extractable" );
Map . addLayer (
raw . select ( 0 ). sldStyle ( mean_0_20 ), {},
"Calcium, extractable, mean visualization, 0-20 cm" );
Map . addLayer (
raw . select ( 1 ). sldStyle ( mean_20_50 ), {},
"Calcium, extractable, mean visualization, 20-50 cm" );
Map . addLayer (
raw . select ( 2 ). sldStyle ( stdev_0_20 ), {},
"Calcium, extractable, stdev visualization, 0-20 cm" );
Map . addLayer (
raw . select ( 3 ). sldStyle ( stdev_20_50 ), {},
"Calcium, extractable, stdev visualization, 20-50 cm" );
var converted = raw . divide ( 10 ). exp (). subtract ( 1 );
var visualization = { min : 100 , max : 2000 };
Map . setCenter ( 25 , - 3 , 2 );
Map . addLayer ( converted . select ( 0 ), visualization , "Calcium, extractable, mean, 0-20 cm" );
Abrir en el editor de código
[null,null,[],[[["\u003cp\u003eThis dataset provides the predicted mean and standard deviation of extractable calcium in African soil at two depths (0-20 cm and 20-50 cm).\u003c/p\u003e\n"],["\u003cp\u003eThe data covers the period from 2001 to 2017 and was produced by iSDA using machine learning and remote sensing.\u003c/p\u003e\n"],["\u003cp\u003ePixel values require back-transformation using the formula \u003ccode\u003eexp(x/10)-1\u003c/code\u003e to obtain actual calcium concentrations in ppm.\u003c/p\u003e\n"],["\u003cp\u003eThe dataset has a 30-meter resolution and may exhibit lower accuracy in dense jungle regions of central Africa.\u003c/p\u003e\n"],["\u003cp\u003eUsers can access this dataset through Google Earth Engine and are encouraged to consult the provided resources for detailed information and support.\u003c/p\u003e\n"]]],[],null,["# iSDAsoil Extractable Calcium\n\nDataset Availability\n: 2001-01-01T00:00:00Z--2017-01-01T00:00:00Z\n\nDataset Provider\n:\n\n\n [iSDA](https://isda-africa.com/)\n\nTags\n:\n [africa](/earth-engine/datasets/tags/africa) [isda](/earth-engine/datasets/tags/isda) [soil](/earth-engine/datasets/tags/soil) \ncalcium \n\n#### Description\n\nExtractable calcium at soil depths of 0-20 cm and 20-50 cm,\npredicted mean and standard deviation.\n\nPixel values must be back-transformed with `exp(x/10)-1`.\n\nIn areas of dense jungle (generally over central Africa), model accuracy is\nlow and therefore artifacts such as banding (striping) might be seen.\n\nSoil property predictions were made by\n[Innovative Solutions for Decision Agriculture Ltd. (iSDA)](https://isda-africa.com/)\nat 30 m pixel size using machine learning coupled with remote sensing data\nand a training set of over 100,000 analyzed soil samples.\n\nFurther information can be found in the\n[FAQ](https://www.isda-africa.com/isdasoil/faq/) and\n[technical information documentation](https://www.isda-africa.com/isdasoil/technical-information/). To submit an issue or request support, please visit\n[the iSDAsoil site](https://isda-africa.com/isdasoil).\n\n### Bands\n\n\n**Pixel Size**\n\n30 meters\n\n**Bands**\n\n| Name | Units | Min | Max | Pixel Size | Description |\n|---------------|-------|-----|-----|------------|------------------------------------------------------------|\n| `mean_0_20` | ppm | 20 | 100 | meters | Calcium, extractable, predicted mean at 0-20 cm depth |\n| `mean_20_50` | ppm | 14 | 100 | meters | Calcium, extractable, predicted mean at 20-50 cm depth |\n| `stdev_0_20` | ppm | 0 | 62 | meters | Calcium, extractable, standard deviation at 0-20 cm depth |\n| `stdev_20_50` | ppm | 0 | 63 | meters | Calcium, extractable, standard deviation at 20-50 cm depth |\n\n### Terms of Use\n\n**Terms of Use**\n\n[CC-BY-4.0](https://spdx.org/licenses/CC-BY-4.0.html)\n\n### Citations\n\nCitations:\n\n- Hengl, T., Miller, M.A.E., Križan, J., et al. African soil properties and nutrients\n mapped at 30 m spatial resolution using two-scale ensemble machine learning.\n Sci Rep 11, 6130 (2021).\n [doi:10.1038/s41598-021-85639-y](https://doi.org/10.1038/s41598-021-85639-y)\n\n### Explore with Earth Engine\n\n| **Important:** Earth Engine is a platform for petabyte-scale scientific analysis and visualization of geospatial datasets, both for public benefit and for business and government users. Earth Engine is free to use for research, education, and nonprofit use. To get started, please [register for Earth Engine access.](https://console.cloud.google.com/earth-engine)\n\n### Code Editor (JavaScript)\n\n```javascript\nvar mean_0_20 =\n'\u003cRasterSymbolizer\u003e' +\n '\u003cColorMap type=\"ramp\"\u003e' +\n '\u003cColorMapEntry color=\"#0D0887\" label=\"0-65.7\" opacity=\"1\" quantity=\"42\"/\u003e' +\n '\u003cColorMapEntry color=\"#350498\" label=\"65.7-120.5\" opacity=\"1\" quantity=\"48\"/\u003e' +\n '\u003cColorMapEntry color=\"#5402A3\" label=\"120.5-163\" opacity=\"1\" quantity=\"51\"/\u003e' +\n '\u003cColorMapEntry color=\"#7000A8\" label=\"163-199.3\" opacity=\"1\" quantity=\"53\"/\u003e' +\n '\u003cColorMapEntry color=\"#8B0AA5\" label=\"199.3-269.4\" opacity=\"1\" quantity=\"56\"/\u003e' +\n '\u003cColorMapEntry color=\"#A31E9A\" label=\"269.4-329.3\" opacity=\"1\" quantity=\"58\"/\u003e' +\n '\u003cColorMapEntry color=\"#B93289\" label=\"329.3-402.4\" opacity=\"1\" quantity=\"60\"/\u003e' +\n '\u003cColorMapEntry color=\"#CC4678\" label=\"402.4-491.7\" opacity=\"1\" quantity=\"62\"/\u003e' +\n '\u003cColorMapEntry color=\"#DB5C68\" label=\"491.7-600.8\" opacity=\"1\" quantity=\"64\"/\u003e' +\n '\u003cColorMapEntry color=\"#E97158\" label=\"600.8-664.1\" opacity=\"1\" quantity=\"65\"/\u003e' +\n '\u003cColorMapEntry color=\"#F48849\" label=\"664.1-811.4\" opacity=\"1\" quantity=\"67\"/\u003e' +\n '\u003cColorMapEntry color=\"#FBA139\" label=\"811.4-896.8\" opacity=\"1\" quantity=\"68\"/\u003e' +\n '\u003cColorMapEntry color=\"#FEBC2A\" label=\"896.8-1095.6\" opacity=\"1\" quantity=\"70\"/\u003e' +\n '\u003cColorMapEntry color=\"#FADA24\" label=\"1095.6-1479.3\" opacity=\"1\" quantity=\"73\"/\u003e' +\n '\u003cColorMapEntry color=\"#F0F921\" label=\"1479.3-12000\" opacity=\"1\" quantity=\"77\"/\u003e' +\n '\u003c/ColorMap\u003e' +\n '\u003cContrastEnhancement/\u003e' +\n'\u003c/RasterSymbolizer\u003e';\n\nvar mean_20_50 =\n'\u003cRasterSymbolizer\u003e' +\n '\u003cColorMap type=\"ramp\"\u003e' +\n '\u003cColorMapEntry color=\"#0D0887\" label=\"0-65.7\" opacity=\"1\" quantity=\"42\"/\u003e' +\n '\u003cColorMapEntry color=\"#350498\" label=\"65.7-120.5\" opacity=\"1\" quantity=\"48\"/\u003e' +\n '\u003cColorMapEntry color=\"#5402A3\" label=\"120.5-163\" opacity=\"1\" quantity=\"51\"/\u003e' +\n '\u003cColorMapEntry color=\"#7000A8\" label=\"163-199.3\" opacity=\"1\" quantity=\"53\"/\u003e' +\n '\u003cColorMapEntry color=\"#8B0AA5\" label=\"199.3-269.4\" opacity=\"1\" quantity=\"56\"/\u003e' +\n '\u003cColorMapEntry color=\"#A31E9A\" label=\"269.4-329.3\" opacity=\"1\" quantity=\"58\"/\u003e' +\n '\u003cColorMapEntry color=\"#B93289\" label=\"329.3-402.4\" opacity=\"1\" quantity=\"60\"/\u003e' +\n '\u003cColorMapEntry color=\"#CC4678\" label=\"402.4-491.7\" opacity=\"1\" quantity=\"62\"/\u003e' +\n '\u003cColorMapEntry color=\"#DB5C68\" label=\"491.7-600.8\" opacity=\"1\" quantity=\"64\"/\u003e' +\n '\u003cColorMapEntry color=\"#E97158\" label=\"600.8-664.1\" opacity=\"1\" quantity=\"65\"/\u003e' +\n '\u003cColorMapEntry color=\"#F48849\" label=\"664.1-811.4\" opacity=\"1\" quantity=\"67\"/\u003e' +\n '\u003cColorMapEntry color=\"#FBA139\" label=\"811.4-896.8\" opacity=\"1\" quantity=\"68\"/\u003e' +\n '\u003cColorMapEntry color=\"#FEBC2A\" label=\"896.8-1095.6\" opacity=\"1\" quantity=\"70\"/\u003e' +\n '\u003cColorMapEntry color=\"#FADA24\" label=\"1095.6-1479.3\" opacity=\"1\" quantity=\"73\"/\u003e' +\n '\u003cColorMapEntry color=\"#F0F921\" label=\"1479.3-12000\" opacity=\"1\" quantity=\"77\"/\u003e' +\n '\u003c/ColorMap\u003e' +\n '\u003cContrastEnhancement/\u003e' +\n'\u003c/RasterSymbolizer\u003e';\n\nvar stdev_0_20 =\n'\u003cRasterSymbolizer\u003e' +\n '\u003cColorMap type=\"ramp\"\u003e' +\n '\u003cColorMapEntry color=\"#fde725\" label=\"low\" opacity=\"1\" quantity=\"1\"/\u003e' +\n '\u003cColorMapEntry color=\"#5dc962\" label=\" \" opacity=\"1\" quantity=\"2\"/\u003e' +\n '\u003cColorMapEntry color=\"#20908d\" label=\" \" opacity=\"1\" quantity=\"3\"/\u003e' +\n '\u003cColorMapEntry color=\"#3a528b\" label=\" \" opacity=\"1\" quantity=\"4\"/\u003e' +\n '\u003cColorMapEntry color=\"#440154\" label=\"high\" opacity=\"1\" quantity=\"5\"/\u003e' +\n '\u003c/ColorMap\u003e' +\n '\u003cContrastEnhancement/\u003e' +\n'\u003c/RasterSymbolizer\u003e';\n\nvar stdev_20_50 =\n'\u003cRasterSymbolizer\u003e' +\n '\u003cColorMap type=\"ramp\"\u003e' +\n '\u003cColorMapEntry color=\"#fde725\" label=\"low\" opacity=\"1\" quantity=\"1\"/\u003e' +\n '\u003cColorMapEntry color=\"#5dc962\" label=\" \" opacity=\"1\" quantity=\"2\"/\u003e' +\n '\u003cColorMapEntry color=\"#20908d\" label=\" \" opacity=\"1\" quantity=\"3\"/\u003e' +\n '\u003cColorMapEntry color=\"#3a528b\" label=\" \" opacity=\"1\" quantity=\"4\"/\u003e' +\n '\u003cColorMapEntry color=\"#440154\" label=\"high\" opacity=\"1\" quantity=\"5\"/\u003e' +\n '\u003c/ColorMap\u003e' +\n '\u003cContrastEnhancement/\u003e' +\n'\u003c/RasterSymbolizer\u003e';\n\nvar raw = ee.Image(\"ISDASOIL/Africa/v1/calcium_extractable\");\nMap.addLayer(\n raw.select(0).sldStyle(mean_0_20), {},\n \"Calcium, extractable, mean visualization, 0-20 cm\");\nMap.addLayer(\n raw.select(1).sldStyle(mean_20_50), {},\n \"Calcium, extractable, mean visualization, 20-50 cm\");\nMap.addLayer(\n raw.select(2).sldStyle(stdev_0_20), {},\n \"Calcium, extractable, stdev visualization, 0-20 cm\");\nMap.addLayer(\n raw.select(3).sldStyle(stdev_20_50), {},\n \"Calcium, extractable, stdev visualization, 20-50 cm\");\n\nvar converted = raw.divide(10).exp().subtract(1);\n\nvar visualization = {min: 100, max: 2000};\n\nMap.setCenter(25, -3, 2);\n\nMap.addLayer(converted.select(0), visualization, \"Calcium, extractable, mean, 0-20 cm\");\n```\n[Open in Code Editor](https://code.earthengine.google.com/?scriptPath=Examples:Datasets/ISDASOIL/ISDASOIL_Africa_v1_calcium_extractable) \n[iSDAsoil Extractable Calcium](/earth-engine/datasets/catalog/ISDASOIL_Africa_v1_calcium_extractable) \nExtractable calcium at soil depths of 0-20 cm and 20-50 cm, predicted mean and standard deviation. Pixel values must be back-transformed with exp(x/10)-1. In areas of dense jungle (generally over central Africa), model accuracy is low and therefore artifacts such as banding (striping) might be seen. Soil property predictions were ... \nISDASOIL/Africa/v1/calcium_extractable, africa,isda,soil \n2001-01-01T00:00:00Z/2017-01-01T00:00:00Z \n-35.22 -31.46 37.98 57.08 \nGoogle Earth Engine \nhttps://developers.google.com/earth-engine/datasets\n\n- [](https://doi.org/https://isda-africa.com/)\n- [](https://doi.org/https://developers.google.com/earth-engine/datasets/catalog/ISDASOIL_Africa_v1_calcium_extractable)"]]