Set data raster ini menggambarkan distribusi spasial populasi permukiman, yang dinyatakan sebagai jumlah absolut penghuni sel.
Estimasi populasi penduduk antara tahun 1975 dan 2020 dalam interval 5 tahun dan proyeksi hingga tahun 2025 dan 2030 yang berasal dari CIESIN GPWv4.11 didesagregasi dari unit sensus atau administrasi ke sel petak, yang didasarkan pada distribusi, volume, dan klasifikasi area terbangun sebagaimana dipetakan dalam lapisan permukaan terbangun GHSL global per era.
Project Global Human Settlement Layer (GHSL) didukung oleh
European Commission, Joint Research Center, dan Directorate-General for
Regional and Urban Policy.
Band
Ukuran Piksel 100 meter
Band
Nama
Ukuran Piksel
Deskripsi
population_count
meter
Jumlah populasi menurut epoch
Persyaratan Penggunaan
Persyaratan Penggunaan
GHSL diproduksi oleh Joint Research Centre Komisi Eropa sebagai data terbuka dan gratis. Penggunaan kembali diizinkan, asalkan sumbernya
diakui. Untuk mengetahui informasi selengkapnya, baca persyaratan penggunaan (Pemberitahuan Hak Cipta dan Penggunaan Ulang Komisi Eropa).
Metodologi : Pesaresi, Martino, Marcello Schiavina, Panagiotis Politis,
Sergio Freire, Katarzyna Krasnodebska,
Johannes H. Uhl, Alessandra Carioli, et al. (2024). Perkembangan Global Human Settlement Layer melalui Penilaian Bersama Data Pengamatan Bumi dan Survei Populasi. International Journal of Digital Earth 17(1).
doi:10.1080/17538947.2024.2390454.
Set data raster ini menggambarkan distribusi spasial populasi penduduk, yang dinyatakan sebagai jumlah absolut penghuni sel. Estimasi populasi penduduk antara tahun 1975 dan 2020 dalam interval 5 tahun dan proyeksi hingga tahun 2025 dan 2030 yang berasal dari CIESIN GPWv4.11 didisagregasi dari unit sensus atau administratif ke sel petak, …
[null,null,[],[[["\u003cp\u003eThe JRC/GHSL/P2023A/GHS_POP dataset provides global residential population data from 1975 to 2030 at a 100-meter resolution.\u003c/p\u003e\n"],["\u003cp\u003ePopulation estimates from 1975-2020 are based on CIESIN GPWv4.11 and disaggregated to grid cells using built-up area data.\u003c/p\u003e\n"],["\u003cp\u003eThe dataset includes projections for residential population in 2025 and 2030.\u003c/p\u003e\n"],["\u003cp\u003eThis open and free dataset, produced by the European Commission Joint Research Centre, requires source acknowledgment for reuse.\u003c/p\u003e\n"],["\u003cp\u003eUsers can explore and analyze this dataset further using Google Earth Engine.\u003c/p\u003e\n"]]],["The dataset provides spatial distribution of residential population, counting inhabitants per cell from 1975 to 2020 in 5-year intervals, with projections to 2025 and 2030. It's based on CIESIN GPWv4.11 data, disaggregated from census data using GHSL built-up area layers. Data is accessible via the provided Earth Engine snippet, with a 100-meter pixel size, and is freely reusable with source acknowledgment.\n"],null,["# GHSL: Global population surfaces 1975-2030 (P2023A)\n\nDataset Availability\n: 1975-01-01T00:00:00Z--2030-12-31T00:00:00Z\n\nDataset Provider\n:\n\n\n [EC JRC](https://ghsl.jrc.ec.europa.eu/ghs_pop2023.php)\n\nTags\n:\n [ghsl](/earth-engine/datasets/tags/ghsl) [jrc](/earth-engine/datasets/tags/jrc) [population](/earth-engine/datasets/tags/population) [sdg](/earth-engine/datasets/tags/sdg) \nciesin-derived \n\n#### Description\n\nThis raster dataset depicts the spatial distribution of residential\npopulation, expressed as the absolute number of inhabitants of the cell.\nResidential population estimates between 1975 and 2020 in 5-year intervals\nand projections to 2025 and 2030 derived from CIESIN GPWv4.11 were\ndisaggregated from census or administrative units to grid cells, informed by\nthe distribution, volume, and classification of built-up area as mapped in\nthe [global GHSL built-up surface layers](https://developers.google.com/earth-engine/datasets/catalog/JRC_GHSL_P2023A_GHS_BUILT_S)\nper epoch.\n\nMore information about the GHSL main products can be found in the\n[GHSL Data Package 2023 report](https://ghsl.jrc.ec.europa.eu/documents/GHSL_Data_Package_2023.pdf?t=1683540422)\n\nThe Global Human Settlement Layer (GHSL) project is supported by the\nEuropean Commission, Joint Research Center, and Directorate-General for\nRegional and Urban Policy.\n\n### Bands\n\n\n**Pixel Size**\n\n100 meters\n\n**Bands**\n\n| Name | Pixel Size | Description |\n|--------------------|------------|---------------------------|\n| `population_count` | meters | Population count by epoch |\n\n### Terms of Use\n\n**Terms of Use**\n\nThe GHSL has been produced by the European Commission Joint Research Centre\nas open and free data. Reuse is authorised, provided the source is\nacknowledged. For more information, please read the use conditions ([European\nCommission Reuse and Copyright Notice](https://ec.europa.eu/info/legal-notice_en)).\n\n### Citations\n\nCitations:\n\n- Dataset : Schiavina, Marcello; Freire, Sergio; Alessandra Carioli;\n MacManus, Kytt (2023): GHS-POP R2023A - GHS population grid\n multitemporal (1975-2030). European Commission, Joint Research Centre\n (JRC)\n [PID: http://data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe](http://data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe)\n [doi:10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE](https://doi.org/10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE)\n- Methodology : Pesaresi, Martino, Marcello Schiavina, Panagiotis Politis,\n Sergio Freire, Katarzyna Krasnodebska,\n Johannes H. Uhl, Alessandra Carioli, et al. (2024). Advances on the\n Global Human Settlement Layer by Joint Assessment of Earth Observation\n and Population Survey Data. International Journal of Digital Earth 17(1).\n [doi:10.1080/17538947.2024.2390454](https://doi.org/10.1080/17538947.2024.2390454).\n\n### DOIs\n\n- \u003chttps://doi.org/10.1080/17538947.2024.2390454\u003e\n- \u003chttps://doi.org/10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE\u003e\n\n### Explore with Earth Engine\n\n| **Important:** Earth Engine is a platform for petabyte-scale scientific analysis and visualization of geospatial datasets, both for public benefit and for business and government users. Earth Engine is free to use for research, education, and nonprofit use. To get started, please [register for Earth Engine access.](https://console.cloud.google.com/earth-engine)\n\n### Code Editor (JavaScript)\n\n```javascript\nvar baseChange =\n [{featureType: 'all', stylers: [{saturation: -100}, {lightness: 45}]}];\nMap.setOptions('baseChange', {'baseChange': baseChange});\nvar image1975 = ee.Image('JRC/GHSL/P2023A/GHS_POP/1975');\nvar image1990 = ee.Image('JRC/GHSL/P2023A/GHS_POP/1990');\nvar image2020 = ee.Image('JRC/GHSL/P2023A/GHS_POP/2020');\nvar populationCountVis = {\n min: 0.0,\n max: 100.0,\n palette:\n ['000004', '320A5A', '781B6C', 'BB3654', 'EC6824', 'FBB41A', 'FCFFA4']\n};\nMap.setCenter(8, 48, 7);\nimage1975 = image1975.updateMask(image1975.gt(0));\nimage1990 = image1990.updateMask(image1990.gt(0));\nimage2020 = image2020.updateMask(image2020.gt(0));\nMap.addLayer(image1975, populationCountVis, 'Population count, 1975');\nMap.addLayer(image1990, populationCountVis, 'Population count, 1990');\nMap.addLayer(image2020, populationCountVis, 'Population count, 2020');\n```\n[Open in Code Editor](https://code.earthengine.google.com/?scriptPath=Examples:Datasets/JRC/JRC_GHSL_P2023A_GHS_POP) \n[GHSL: Global population surfaces 1975-2030 (P2023A)](/earth-engine/datasets/catalog/JRC_GHSL_P2023A_GHS_POP) \nThis raster dataset depicts the spatial distribution of residential population, expressed as the absolute number of inhabitants of the cell. Residential population estimates between 1975 and 2020 in 5-year intervals and projections to 2025 and 2030 derived from CIESIN GPWv4.11 were disaggregated from census or administrative units to grid cells, ... \nJRC/GHSL/P2023A/GHS_POP, ghsl,jrc,population,sdg \n1975-01-01T00:00:00Z/2030-12-31T00:00:00Z \n-90 -180 90 180 \nGoogle Earth Engine \nhttps://developers.google.com/earth-engine/datasets\n\n- [https://doi.org/10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE](https://doi.org/https://ghsl.jrc.ec.europa.eu/ghs_pop2023.php)\n- [https://doi.org/10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE](https://doi.org/https://developers.google.com/earth-engine/datasets/catalog/JRC_GHSL_P2023A_GHS_POP)"]]