O mapa de cobertura da terra em todo o Irã foi gerado processando imagens do Sentinel na plataforma de nuvem do Google Earth Engine. Para isso, mais de 2.500 imagens do Sentinel-1 e mais de 11.000 do Sentinel-2 foram processadas para produzir um único conjunto de dados de mosaico para o ano de 2017. Em seguida, um método de classificação de floresta aleatória baseado em objetos foi treinado por um grande número de amostras de referência para 13 classes, gerando o mapa de cobertura da terra em todo o Irã.
Bandas
Bandas
Nome
Tamanho do pixel
Descrição
classification
10 metros
Classificação
Tabela de classe de classificação
Valor
Cor
Descrição
1
#000000
Urbana
2
#006eff
Água
3
#41a661
Pântano
4
#ff7f7f
Kalut (yardang)
5
#bee8ff
Marshland
6
#ff00c5
Salty Land
7
#ff0000
Clay
8
#00734c
Floresta
9
#732600
Outcrop
10
#ffaa00
Planície descoberta
11
#d3ffbe
Areia
12
#446589
Terra agrícola
13
#cccccc
Range Land
Termos de Uso
Termos de Uso
Este trabalho "Mapa de cobertura da terra do Irã v1 13 classes (2017)" de Arsalan Ghorbanian, Mohammad Kakooei, Meisam Amani, Sahel Mahdavi, Ali Mohammadzadeh, Mahdi Hasanlou está licenciado sob a Licença internacional Creative Commons Atribuição 4.0 (CC BY 4.0)
Citações
Citações:
Ghorbanian, A., Kakooei, M., Amani, M., Mahdavi, S., Mohammadzadeh, A., &
Hasanlou, M. (2020). Mapa de cobertura da terra aprimorado do Irã usando imagens do Sentinel no Google Earth Engine e um novo fluxo de trabalho automático para classificação da cobertura da terra usando amostras de treinamento migradas. ISPRS Journal of
Photogrammetry and Remote Sensing, 167, 276-288.
doi:10.1016/j.isprsjprs.2020.07.013
O mapa de cobertura da terra em todo o Irã foi gerado processando imagens do Sentinel na plataforma de nuvem do Google Earth Engine. Para isso, mais de 2.500 imagens do Sentinel-1 e mais de 11.000 imagens do Sentinel-2 foram processadas para produzir um único conjunto de dados de mosaico para o ano de 2017. Em seguida, um método de classificação de floresta aleatória baseado em objetos foi treinado…
[null,null,[],[[["\u003cp\u003eThis dataset provides a 13-class land cover map of Iran for the year 2017, created using Sentinel-1 and Sentinel-2 imagery processed in Google Earth Engine.\u003c/p\u003e\n"],["\u003cp\u003eThe classification was performed using an object-based Random Forest method trained with a large number of reference samples.\u003c/p\u003e\n"],["\u003cp\u003eThe dataset is available at a 10-meter resolution and includes classes like urban, water, wetland, forest, and farmland.\u003c/p\u003e\n"],["\u003cp\u003eThe data is provided by the K.N. Toosi University of Technology LiDAR Lab and is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0).\u003c/p\u003e\n"],["\u003cp\u003eUsers can access and analyze this dataset through the Google Earth Engine platform.\u003c/p\u003e\n"]]],["The K. N. Toosi University of Technology LiDAR Lab produced a 13-class land cover map of Iran for 2017, using over 13,500 Sentinel-1 and Sentinel-2 images processed in Google Earth Engine. An object-based Random Forest classification method was applied, with reference samples to identify categories like urban, water, forest, and more. The map is accessible via Earth Engine with the snippet `ee.Image(\"KNTU/LiDARLab/IranLandCover/V1\")`, under a CC BY 4.0 license.\n"],null,["# Iran Land Cover Map v1 13-class (2017)\n\nDataset Availability\n: 2017-01-01T00:00:00Z--2018-01-01T00:00:00Z\n\nDataset Provider\n:\n\n\n [K. N. Toosi University of Technology LiDAR Lab](https://en.kntu.ac.ir/laser-scanners-laboratory/)\n\nTags\n:\n [landcover](/earth-engine/datasets/tags/landcover) [landuse-landcover](/earth-engine/datasets/tags/landuse-landcover) \n iran \nkntu \n\n#### Description\n\nThe Iran-wide land cover map was generated by processing Sentinel imagery\nwithin the Google Earth Engine Cloud platform. For this purpose, over 2,500\nSentinel-1 and over 11,000 Sentinel-2 images were processed to produce a single\nmosaic dataset for the year 2017. Then, an object-based Random Forest\nclassification method was trained by a large number of reference samples for 13\nclasses to generate the Iran-wide land cover map.\n\n### Bands\n\n**Bands**\n\n| Name | Pixel Size | Description |\n|------------------|------------|----------------|\n| `classification` | 10 meters | Classification |\n\n**classification Class Table**\n\n| Value | Color | Description |\n|-------|---------|-----------------|\n| 1 | #000000 | Urban |\n| 2 | #006eff | Water |\n| 3 | #41a661 | Wetland |\n| 4 | #ff7f7f | Kalut (yardang) |\n| 5 | #bee8ff | Marshland |\n| 6 | #ff00c5 | Salty Land |\n| 7 | #ff0000 | Clay |\n| 8 | #00734c | Forest |\n| 9 | #732600 | Outcrop |\n| 10 | #ffaa00 | Uncovered Plain |\n| 11 | #d3ffbe | Sand |\n| 12 | #446589 | Farm Land |\n| 13 | #cccccc | Range Land |\n\n### Terms of Use\n\n**Terms of Use**\n\nThis work \"Iran Land Cover Map\nv1 13-class (2017)\" by Arsalan Ghorbanian, Mohammad Kakooei, Meisam Amani,\nSahel Mahdavi, Ali Mohammadzadeh, Mahdi Hasanlou is licensed under the [Creative\nCommons Attribution 4.0 International License (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/)\n\n### Citations\n\nCitations:\n\n- Ghorbanian, A., Kakooei, M., Amani, M., Mahdavi, S., Mohammadzadeh, A., \\&\n Hasanlou, M. (2020). Improved land cover map of Iran using Sentinel imagery\n within Google Earth Engine and a novel automatic workflow for land cover\n classification using migrated training samples. ISPRS Journal of\n Photogrammetry and Remote Sensing, 167, 276-288.\n [doi:10.1016/j.isprsjprs.2020.07.013](https://doi.org/10.1016/j.isprsjprs.2020.07.013)\n\n### Explore with Earth Engine\n\n| **Important:** Earth Engine is a platform for petabyte-scale scientific analysis and visualization of geospatial datasets, both for public benefit and for business and government users. Earth Engine is free to use for research, education, and nonprofit use. To get started, please [register for Earth Engine access.](https://console.cloud.google.com/earth-engine)\n\n### Code Editor (JavaScript)\n\n```javascript\nvar dataset = ee.Image('KNTU/LiDARLab/IranLandCover/V1');\n\nvar visualization = {\n bands: ['classification']\n};\n\nMap.setCenter(54.0, 33.0, 5);\n\nMap.addLayer(dataset, visualization, 'Classification');\n```\n[Open in Code Editor](https://code.earthengine.google.com/?scriptPath=Examples:Datasets/KNTU/KNTU_LiDARLab_IranLandCover_V1) \n[Iran Land Cover Map v1 13-class (2017)](/earth-engine/datasets/catalog/KNTU_LiDARLab_IranLandCover_V1) \nThe Iran-wide land cover map was generated by processing Sentinel imagery within the Google Earth Engine Cloud platform. For this purpose, over 2,500 Sentinel-1 and over 11,000 Sentinel-2 images were processed to produce a single mosaic dataset for the year 2017. Then, an object-based Random Forest classification method was trained ... \nKNTU/LiDARLab/IranLandCover/V1, landcover,landuse-landcover \n2017-01-01T00:00:00Z/2018-01-01T00:00:00Z \n24.62 43.46 39.95 65.58 \nGoogle Earth Engine \nhttps://developers.google.com/earth-engine/datasets\n\n- [](https://doi.org/https://en.kntu.ac.ir/laser-scanners-laboratory/)\n- [](https://doi.org/https://developers.google.com/earth-engine/datasets/catalog/KNTU_LiDARLab_IranLandCover_V1)"]]