-
GPW 草地年度优势类 v1
此数据集以 30 米的空间分辨率提供 2000 年至 2022 年的全球年度草地(人工和天然/半天然)主要类别地图。此地图由 Land & Carbon Lab Global Pasture Watch 计划制作,其中显示的草地范围包括任何地表覆盖类型,只要其中包含至少 30% 的… 全球 global-pasture-watch land landcover landuse landuse-landcover -
GPW 耕地草地年概率 v1
此数据集以 30 米的空间分辨率提供 2000 年至 2022 年的全球耕作草地年度概率地图。此地图由 Land & Carbon Lab Global Pasture Watch 计划制作,其中显示的草地范围包括任何地表覆盖类型,只要其中至少包含 30% 的干旱或… 全球 global-pasture-watch land landcover landuse landuse-landcover -
GPW 天然/半天然草地的年概率 v1
此数据集提供 2000 年至 2022 年全球天然/半天然草地的年度概率地图,空间分辨率为 30 米。此地图由 Land & Carbon Lab Global Pasture Watch 计划制作,其中显示的草地范围包括任何地表覆盖类型,只要其中至少包含 30% 的干旱或… 全球 global-pasture-watch land landcover landuse landuse-landcover -
GPW Annual uncalibrated Gross Primary Productivity (uGPP) v1
此数据集提供 2000 年以来全球未校准的基于 EO 的初级生产总力,空间分辨率为 30 米。当前数据集由 Land & Carbon Lab Global Pasture Watch 计划生成,提供自 2000 年以来全球范围内的总初级生产力 (GPP) 值,空间分辨率为 30 米。GPP 值是… 全球 global-pasture-watch land landcover landuse plant-productivity
Global Pasture Watch
[null,null,[],[[["\u003cp\u003eThe Global Pasture Watch research consortium, initiated by the Land & Carbon Lab, focuses on developing global products for grasslands and livestock grazing.\u003c/p\u003e\n"],["\u003cp\u003eThe consortium comprises experts in geospatial monitoring, machine learning, ecology, and agriculture from leading research institutions.\u003c/p\u003e\n"],["\u003cp\u003eThree key datasets are provided: annual probability maps of cultivated grasslands, dominant class maps of grasslands, and annual probability maps of natural/semi-natural grasslands.\u003c/p\u003e\n"],["\u003cp\u003eThese datasets offer global coverage from 2000 to 2022 at a 30-meter spatial resolution.\u003c/p\u003e\n"],["\u003cp\u003eThe mapped grassland extent includes any land cover type containing at least 30% grassland.\u003c/p\u003e\n"]]],["The Land & Carbon Lab, in collaboration with the WRI and Bezos Earth Fund, formed the Global Pasture Watch consortium. This group of experts develops global products for grassland and livestock monitoring. They produce annual maps from 2000-2022 at 30-meter resolution detailing the probability of cultivated, natural/semi-natural grasslands, and dominant grassland classes. The maps identify any land cover containing at least 30% of dry or.\n"],null,["# Global Pasture Watch\n\nThe Land \\& Carbon Lab, convened by the World Resources Institute (WRI) and the Bezos Earth Fund, established the Global Pasture Watch research consortium. The consortium, which is made up of experts in geospatial monitoring, machine learning, ecology and agriculture across some of the world's leading research institutions, is developing global products for grasslands and livestock grazing in the 21st century. \n[](https://landcarbonlab.org/data/global-grassland-and-livestock-monitoring) \n-\n\n |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### GPW Annual Dominant Class of Grasslands v1](/earth-engine/datasets/catalog/projects_global-pasture-watch_assets_ggc-30m_v1_grassland_c) |\n | This dataset provides global annual dominant class maps of grasslands (cultivated and natural/semi-natural) from 2000 to 2022 at 30-m spatial resolution. Produced by Land \\& Carbon Lab Global Pasture Watch initiative, the mapped grassland extent includes any land cover type, which contains at least 30% ... |\n | [global](/earth-engine/datasets/tags/global) [global-pasture-watch](/earth-engine/datasets/tags/global-pasture-watch) [land](/earth-engine/datasets/tags/land) [landcover](/earth-engine/datasets/tags/landcover) [landuse](/earth-engine/datasets/tags/landuse) [landuse-landcover](/earth-engine/datasets/tags/landuse-landcover) |\n\n-\n\n |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### GPW Annual Probabilities of Cultivated Grasslands v1](/earth-engine/datasets/catalog/projects_global-pasture-watch_assets_ggc-30m_v1_cultiv-grassland_p) |\n | This dataset provides global annual probability maps of cultivated grassland from 2000 to 2022 at 30-m spatial resolution. Produced by Land \\& Carbon Lab Global Pasture Watch initiative, the mapped grassland extent includes any land cover type, which contains at least 30% of dry or ... |\n | [global](/earth-engine/datasets/tags/global) [global-pasture-watch](/earth-engine/datasets/tags/global-pasture-watch) [land](/earth-engine/datasets/tags/land) [landcover](/earth-engine/datasets/tags/landcover) [landuse](/earth-engine/datasets/tags/landuse) [landuse-landcover](/earth-engine/datasets/tags/landuse-landcover) |\n\n-\n\n |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### GPW Annual Probabilities of Natural/Semi-natural Grasslands v1](/earth-engine/datasets/catalog/projects_global-pasture-watch_assets_ggc-30m_v1_nat-semi-grassland_p) |\n | This dataset provides global annual probability maps of natural/semi-natural grassland from 2000 to 2022 at 30-m spatial resolution. Produced by Land \\& Carbon Lab Global Pasture Watch initiative, the mapped grassland extent includes any land cover type, which contains at least 30% of dry or ... |\n | [global](/earth-engine/datasets/tags/global) [global-pasture-watch](/earth-engine/datasets/tags/global-pasture-watch) [land](/earth-engine/datasets/tags/land) [landcover](/earth-engine/datasets/tags/landcover) [landuse](/earth-engine/datasets/tags/landuse) [landuse-landcover](/earth-engine/datasets/tags/landuse-landcover) |\n\n-\n\n |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### GPW Annual uncalibrated Gross Primary Productivity (uGPP) v1](/earth-engine/datasets/catalog/projects_global-pasture-watch_assets_ggpp-30m_v1_ugpp_m) |\n | This dataset provides global uncalibrated EO-based Gross Primary Productivity from 2000 at 30-m spatial resolution. Produced by Land \\& Carbon Lab Global Pasture Watch initiative, the current dataset provides Gross Primary Productivity (GPP) values globally at 30-m spatial resolution from 2000 onwards. GPP values are ... |\n | [global](/earth-engine/datasets/tags/global) [global-pasture-watch](/earth-engine/datasets/tags/global-pasture-watch) [land](/earth-engine/datasets/tags/land) [landcover](/earth-engine/datasets/tags/landcover) [landuse](/earth-engine/datasets/tags/landuse) [plant-productivity](/earth-engine/datasets/tags/plant-productivity) |"]]