Resumen del curso
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
Deberían poder hacer lo siguiente:
- Describe el agrupamiento para aplicaciones de AA.
- Sigue las prácticas recomendadas y las consideraciones para agrupar datos.
- Emplea el algoritmo k-means.
- Comparar los enfoques de agrupamiento populares
- Elige entre las medidas de similitud supervisadas y manuales, según corresponda.
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2025-02-25 (UTC)
[null,null,["Última actualización: 2025-02-25 (UTC)"],[[["\u003cp\u003eThis training equips you with the ability to describe clustering in machine learning and understand its practical applications.\u003c/p\u003e\n"],["\u003cp\u003eIt guides you through best practices for data clustering and introduces the k-means algorithm for effective implementation.\u003c/p\u003e\n"],["\u003cp\u003eThe training enables you to compare various clustering methods and make informed choices between supervised and manual similarity measures.\u003c/p\u003e\n"]]],[],null,["# Course summary\n\n\u003cbr /\u003e\n\nYou should now be able to:\n\n- Describe clustering for ML applications.\n- Follow best practices and considerations for clustering data.\n- Employ the k-means algorithm.\n- Compare popular clustering approaches.\n- Choose between supervised and manual similarity measures, as appropriate."]]