Course Summary and Next Steps
You should now be able to:
- Understand the difference between generative and discriminative models.
- Identify problems that GANs can solve.
- Understand the roles of the generator and discriminator in a GAN system.
- Understand the advantages and disadvantages of common GAN loss functions.
- Identify possible solutions to common problems with GAN training.
- Use the TF GAN library to make a GAN.
What's Next
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-01-13 UTC.
[null,null,["Last updated 2025-01-13 UTC."],[[["This webpage focuses on providing an understanding of Generative Adversarial Networks (GANs), including their applications, architecture, and training challenges."],["Readers will learn to differentiate between generative and discriminative models, identify problems suited for GANs, and grasp the functions of the generator and discriminator components."],["The content covers various GAN loss functions with their pros and cons, along with strategies to address typical GAN training issues."],["Practical application is emphasized by guiding readers to use the TensorFlow GAN library for GAN creation."],["Further exploration is encouraged through links to more TensorFlow GAN examples for continued learning and experimentation."]]],[]]