针对自提和配送进行基本的停单优化

此方案可优化分配给车辆的停靠点的顺序,并使用简单的费用参数。这是最简单的路线优化操作模式,可确保在指定的时间范围内访问所有停靠站。

以下示例展示了一个基本场景,其中包含一辆车和三批货物,所有货物都从一个名为“仓库”的地点出发。

查看示例请求

      {
        "populatePolylines": true,
        "populateTransitionPolylines": true,
        "model": {
          "globalStartTime": "2023-01-13T16:00:00-08:00",
          "globalEndTime": "2023-01-14T16:00:00-08:00",
          "shipments": [
            {
              "deliveries": [
                {
                  "arrivalLocation": {
                    "latitude": 37.789456,
                    "longitude": -122.390192
                  },
                  "duration": "250s"
                }
              ],
              "pickups": [
                {
                  "arrivalLocation": {
                    "latitude": 37.794465,
                    "longitude": -122.394839
                  },
                  "duration": "150s"
                }
              ]
            },
            {
              "deliveries": [
                {
                  "arrivalLocation": {
                    "latitude": 37.789116,
                    "longitude": -122.395080
                  },
                  "duration": "250s"
                }
              ],
              "pickups": [
                {
                  "arrivalLocation": {
                    "latitude": 37.794465,
                    "longitude": -122.394839
                  },
                  "duration": "150s"
                }
              ]
            },
            {
              "deliveries": [
                {
                  "arrivalLocation": {
                    "latitude": 37.795242,
                    "longitude": -122.399347
                  },
                  "duration": "250s"
                }
              ],
              "pickups": [
                {
                  "arrivalLocation": {
                    "latitude": 37.794465,
                    "longitude": -122.394839
                  },
                  "duration": "150s"
                }
              ]
            }
          ],
          "vehicles": [
            {
              "endLocation": {
                "latitude": 37.794465,
                "longitude": -122.394839
              },
              "startLocation": {
                "latitude": 37.794465,
                "longitude": -122.394839
              },
              "costPerKilometer": 10.0,
              "costPerHour": 40.0
            }
          ]
        }
      }
    

路线优化请求字段

概览中所述,最重要的路线优化请求属性是 vehiclesshipments

除了车辆和货件之外,该请求还包含以下字段:

多段线

populatePolylinespopulateTransitionPolylines 用于指定路线优化是否应返回折线。

该服务使用 Maps JS 多段线编解码器对多段线进行编码,该编解码器使用可打印的 ASCII 字符表示二进制多段线数据。您可以使用交互式多段线编码器实用程序直观呈现路线优化功能计算出的路线。本指南中的示例将 populatePolylinespopulateTransitionPolylines 设置为 true,但其他指南将它们设置为 false 以减小响应大小。

如需了解编码格式,请参阅编码多段线算法格式

全局时间限制

model.globalStartTimemodel.globalEndTime 设置为任意 24 小时的时间段。这样可以更轻松地解读输出时间戳。

参观地点

示例请求仅使用 model.shipments[].pickups[].arrivalLocationmodel.shipments[].deliveries[].arrivalLocation。此外,还有一个 departureLocation 属性,用于处理车辆的出发点与到达点不同的情况,例如停车场的入口位于建筑物的一侧,出口位于另一侧。在本指南及后续指南中,我们假设到达点和出发点相同。

到达和离开 waypoint 也可作为 latLng 的替代方案。 Waypoint 字段支持使用 Google 地点 ID 作为 LatLng 的替代方案,还可以指定车辆航向。如需了解详情,请参阅参考文档 (RESTgRPC)。

示例中的限制条件

此方案以多种方式限制了优化器:

  1. 所有活动都必须在全局开始时间和结束时间之间完成。 在此场景中,鉴于货件的临近程度和广泛的全球时间窗口,开始时间和结束时间是一个非常宽松的限制。
  2. 所有配送都必须完成。如果未在 shipments 上指定惩罚费用,则这是默认行为。
  3. costPerKilometercostPerHour 设置在车辆上。

费用问题在费用模型参数中进行了说明。

路线优化响应属性

查看对示例请求的响应

    {
      "routes": [
        {
          "vehicleStartTime": "2023-01-14T00:00:00Z",
          "vehicleEndTime": "2023-01-14T00:36:41Z",
          "visits": [
            {
              "shipmentIndex": 2,
              "isPickup": true,
              "startTime": "2023-01-14T00:00:00Z",
              "detour": "0s"
            },
            {
              "shipmentIndex": 1,
              "isPickup": true,
              "startTime": "2023-01-14T00:02:30Z",
              "detour": "150s"
            },
            {
              "isPickup": true,
              "startTime": "2023-01-14T00:05:00Z",
              "detour": "300s"
            },
            {
              "startTime": "2023-01-14T00:11:25Z",
              "detour": "0s"
            },
            {
              "shipmentIndex": 1,
              "startTime": "2023-01-14T00:19:29Z",
              "detour": "503s"
            },
            {
              "shipmentIndex": 2,
              "startTime": "2023-01-14T00:29:02Z",
              "detour": "1324s"
            }
          ],
          "transitions": [
            {
              "travelDuration": "0s",
              "waitDuration": "0s",
              "totalDuration": "0s",
              "startTime": "2023-01-14T00:00:00Z",
              "routePolyline": {}
            },
            {
              "travelDuration": "0s",
              "waitDuration": "0s",
              "totalDuration": "0s",
              "startTime": "2023-01-14T00:02:30Z",
              "routePolyline": {}
            },
            {
              "travelDuration": "0s",
              "waitDuration": "0s",
              "totalDuration": "0s",
              "startTime": "2023-01-14T00:05:00Z",
              "routePolyline": {}
            },
            {
              "travelDuration": "235s",
              "travelDistanceMeters": 795,
              "waitDuration": "0s",
              "totalDuration": "235s",
              "startTime": "2023-01-14T00:07:30Z",
              "routePolyline": {
                "points": "kvteFtfjVAA?C?C@C?A?C@AFMj@s@JKb@k@Zc@LSjA}ARWDGdAxAdAvAXa@@k@AsA\\c@FKp@_A\\c@Ze@fA{ALSFGd@o@rAgBB{BZc@"
              }
            },
            {
              "travelDuration": "234s",
              "travelDistanceMeters": 793,
              "waitDuration": "0s",
              "totalDuration": "234s",
              "startTime": "2023-01-14T00:15:35Z",
              "routePolyline": {
                "points": "cwseFti_jVRWj@w@x@eAHLNRHJbApAHLX\\V^?@hA~AT\\PVFFDHDFJNp@~@NRLNNTFFUZIJY^Y^g@p@[`@KP{@fAEFSXe@l@c@h@WZY\\?BELk@v@MNa@l@"
              }
            },
            {
              "travelDuration": "323s",
              "travelDistanceMeters": 1204,
              "waitDuration": "0s",
              "totalDuration": "323s",
              "startTime": "2023-01-14T00:23:39Z",
              "routePolyline": {
                "points": "cuseFhjVSTY`@Yb@GHEDIJEF]f@IJi@r@oAbBeCfDKLaApAKNQVIPKPCDQJIBIBM@iAJeALqBVC@C?A?QBYDI@C?_@Dc@FO@a@FDp@HfAHvABVDl@Dj@PpCQDiALsALAQASKwAOgBEe@COCYEa@Es@Eg@"
              }
            },
            {
              "travelDuration": "209s",
              "travelDistanceMeters": 665,
              "waitDuration": "0s",
              "totalDuration": "209s",
              "startTime": "2023-01-14T00:33:12Z",
              "routePolyline": {
                "points": "{zteFxbajV?CAYEc@AMC_@AOAK?E?CCWAOAKCe@CY?WScDEm@d@EFA\\ENCB?XEVC^E`@EhBUVCNEB?@?\\Er@IMUe@k@k@w@AAMQa@i@SWQWMQi@u@AC?A"
              }
            }
          ],
          "routePolyline": {
            "points": "kvteFtfjVAA?C?C@C?A?C@AFMj@s@JKb@k@Zc@LSjA}ARWDGdAxAdAvAXa@@k@AsA\\c@FKp@_A\\c@Ze@fA{ALSFGd@o@rAgBB{BZc@RWj@w@x@eAHLNRHJbApAHLX\\V^?@hA~AT\\PVFFDHDFJNp@~@NRLNNTFFUZIJY^Y^g@p@[@KP{@fAEFSXe@l@c@h@WZY\\?BELk@v@MNa@l@STY@Yb@GHEDIJEF]f@IJi@r@oAbBeCfDKLaApAKNQVIPKPCDQJIBIBM@iAJeALqBVC@C?A?QBYDI@C?_@Dc@FO@a@FDp@HfAHvABVDl@Dj@PpCQDiALsALAQASKwAOgBEe@COCYEa@Es@Eg@?CAYEc@AMC_@AOAK?E?CCWAOAKCe@CY?WScDEm@d@EFA\\ENCB?XEVC^E`@EhBUVCNEB?@?\\Er@IMUe@k@k@w@AAMQa@i@SWQWMQi@u@AC?A"
          },
          "metrics": {
            "performedShipmentCount": 3,
            "travelDuration": "1001s",
            "waitDuration": "0s",
            "delayDuration": "0s",
            "breakDuration": "0s",
            "visitDuration": "1200s",
            "totalDuration": "2201s",
            "travelDistanceMeters": 3457
          },
          "travelSteps": [
            {
              "duration": "0s",
              "routePolyline": {}
            },
            {
              "duration": "0s",
              "routePolyline": {}
            },
            {
              "duration": "0s",
              "routePolyline": {}
            },
            {
              "duration": "227s",
              "distanceMeters": 794,
              "routePolyline": {
                "points": "kvteFtfjVAA?C?C@C?A?C@AFMj@s@JKb@k@Zc@LSjA}ARWDGdAxAdAvAXa@@k@AsA\\c@FKp@_A\\c@Ze@fA{ALSFGd@o@rAgBB{BZc@"
              }
            },
            {
              "duration": "233s",
              "distanceMeters": 791,
              "routePolyline": {
                "points": "cwseFti_jVRWj@w@x@eAHLNRHJbApAHLX\\V^?@hA~AT\\PVFFDHDFJNp@~@NRLNNTFFUZIJY^Y^g@p@[`@KP{@fAEFSXe@l@c@h@WZY\\?BELk@v@MNa@l@"
              }
            },
            {
              "duration": "322s",
              "distanceMeters": 1205,
              "routePolyline": {
                "points": "cuseFhjVSTY`@Yb@GHEDIJEF]f@IJi@r@oAbBeCfDKLaApAKNQVIPKPCDQJIBIBM@iAJeALqBVC@C?A?QBYDI@C?_@Dc@FO@a@FDp@HfAHvABVDl@Dj@PpCQDiALsALAQASKwAOgBEe@COCYEa@Es@Eg@"
              }
            },
            {
              "duration": "208s",
              "distanceMeters": 666,
              "routePolyline": {
                "points": "{zteFxbajV?CAYEc@AMC_@AOAK?E?CCWAOAKCe@CY?WScDEm@d@EFA\\ENCB?XEVC^E`@EhBUVCNEB?@?\\Er@IMUe@k@k@w@AAMQa@i@SWQWMQi@u@AC?A"
              }
            }
          ],
          "vehicleDetour": "2201s",
          "routeCosts": {
            "model.vehicles.cost_per_hour": 24.455555555555556,
            "model.vehicles.cost_per_kilometer": 34.57
          },
          "routeTotalCost": 59.025555555555556
        }
      ],
      "totalCost": 59.025555555555556,
      "metrics": {
        "aggregatedRouteMetrics": {
          "performedShipmentCount": 3,
          "travelDuration": "1001s",
          "waitDuration": "0s",
          "delayDuration": "0s",
          "breakDuration": "0s",
          "visitDuration": "1200s",
          "totalDuration": "2201s",
          "travelDistanceMeters": 3457
        },
        "usedVehicleCount": 1,
        "earliestVehicleStartTime": "2023-01-14T00:00:00Z",
        "latestVehicleEndTime": "2023-01-14T00:36:41Z",
        "totalCost": 59.025555555555556,
        "costs": {
          "model.vehicles.cost_per_kilometer": 34.57,
          "model.vehicles.cost_per_hour": 24.455555555555556
        }
      }
    }
    

路线优化响应包含一个顶级 routes 字段,用于表示建议的路线,每辆车对应一条路线。由于本指南中的示例请求仅指定了一辆车,因此 routes 包含一条 ShipmentRoute 消息。

ShipmentRoute属性

对于 ShipmentRoute 消息类型,最重要的两个属性是 visitstransitions

每个 Visit 都表示完成了请求消息中某个 VisitRequest 的取货或送货。访问实际上是分配给车辆在某个地点和时间完成的工作。

每个 Transition 都表示车辆从一个位置行驶到下一个位置。过渡可以发生在车辆的起点、访问位置和车辆的终点之间。

为了重构车辆的完整路线,必须合并 ShipmentRoutevisitstransitions。将字段组合成车辆活动进度的形式,如下所示:

request.vehicles[0].startLocation -> transitions[0] -> visits[0] ->
transitions[1] -> visits[1] -> transitions[2] -> ... -> visits[3] ->
transitions[4] -> request.vehicles[0].endLocation

ShipmentRoutetransitions 数量始终比 visits 多一个,因为车辆必须从起始位置行驶到路线开始时的第一个访问位置,并从路线结束时的最后一个访问位置行驶到结束位置。如果车辆缺少起始位置或结束位置,transitions 的数量仍会比 visits 多一个,因为系统会将首次或最后一次访问的位置分别用作车辆的起始位置或结束位置。

在此示例中,前三次取货访问之间存在距离和时长均为零的过渡,因为所有三次取货访问在请求中共享同一位置。

如需了解详情,请参阅 ShipmentRoute 参考文档(RESTgRPC)。

简单的途经点顺序优化

如本例所示,路线优化模型将访问视为货件的属性,而没有将途经点或停靠点视为独立实体的概念。不过,可以将经停点或途经点表示为仅包含一个 VisitRequest(作为取货或送货)的货件。车辆仍必须分配 costPerHourcostPerKilometer,优化器才能找到最佳路线(而不是找到任何可行路线)。