示例:时间窗口

此示例展示了如何使用 timeWindows 为货件设置取件和送达时间。

如需查看完整的概念性概览并了解有关 timeWindows 的更多使用方式,请参阅时间窗口关键概念文档。

场景 1:在时间窗口内投放

以下示例展示了一个场景,其中一辆车必须在指定的 timeWindows 内运送三批货物。

示例请求

此请求包含三批货物,每批货物的配送TimeWindow各不相同:

  • shipments[0] 送货时间:18:00 - 19:00
  • shipments[1] 送货时间:18:00 - 18:30
  • shipments[2] 送货时间:17:30 - 18:00

查看包含时间窗口的请求示例

{
  "populatePolylines": false,
  "populateTransitionPolylines": false,
  "model": {
    "globalStartTime": "2023-01-13T16:00:00Z",
    "globalEndTime": "2023-01-14T16:00:00Z",
    "shipments": [
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789456,
              "longitude": -122.390192
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T18:00:00Z",
                "endTime": "2023-01-13T19:00:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 100.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789116,
              "longitude": -122.395080
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T18:00:00Z",
                "endTime": "2023-01-13T18:30:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 20.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.795242,
              "longitude": -122.399347
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T17:30:00Z",
                "endTime": "2023-01-13T18:00:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 50.0
      }
    ],
    "vehicles": [
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 40.0,
        "costPerKilometer": 10.0
      }
    ]
  }
}
    

示例响应

响应显示,优化器会安排每个 visits 以遵守时间窗口,并优先交付时间窗口较早的货物。

查看对包含时间窗口的示例请求的响应

{
  "routes": [
    {
      "vehicleStartTime": "2023-01-13T17:35:50Z",
      "vehicleEndTime": "2023-01-13T18:17:24Z",
      "visits": [
        {
          "isPickup": true,
          "startTime": "2023-01-13T17:35:50Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 1,
          "isPickup": true,
          "startTime": "2023-01-13T17:38:20Z",
          "detour": "150s"
        },
        {
          "shipmentIndex": 2,
          "isPickup": true,
          "startTime": "2023-01-13T17:40:50Z",
          "detour": "300s"
        },
        {
          "shipmentIndex": 2,
          "startTime": "2023-01-13T17:50:09Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 1,
          "startTime": "2023-01-13T18:00:00Z",
          "detour": "796s"
        },
        {
          "startTime": "2023-01-13T18:07:35Z",
          "detour": "1520s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:35:50Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:38:20Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:40:50Z"
        },
        {
          "travelDuration": "409s",
          "travelDistanceMeters": 1371,
          "waitDuration": "0s",
          "totalDuration": "409s",
          "startTime": "2023-01-13T17:43:20Z"
        },
        {
          "travelDuration": "341s",
          "travelDistanceMeters": 1312,
          "waitDuration": "0s",
          "totalDuration": "341s",
          "startTime": "2023-01-13T17:54:19Z"
        },
        {
          "travelDuration": "205s",
          "travelDistanceMeters": 636,
          "waitDuration": "0s",
          "totalDuration": "205s",
          "startTime": "2023-01-13T18:04:10Z"
        },
        {
          "travelDuration": "339s",
          "travelDistanceMeters": 1276,
          "waitDuration": "0s",
          "totalDuration": "339s",
          "startTime": "2023-01-13T18:11:45Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 3,
        "travelDuration": "1294s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "1200s",
        "totalDuration": "2494s",
        "travelDistanceMeters": 4595
      },
      "routeCosts": {
        "model.vehicles.cost_per_hour": 27.711111111111112,
        "model.vehicles.cost_per_kilometer": 45.95
      },
      "routeTotalCost": 73.661111111111111
    }
  ],
  "metrics": {
    "aggregatedRouteMetrics": {
      "performedShipmentCount": 3,
      "travelDuration": "1294s",
      "waitDuration": "0s",
      "delayDuration": "0s",
      "breakDuration": "0s",
      "visitDuration": "1200s",
      "totalDuration": "2494s",
      "travelDistanceMeters": 4595
    },
    "usedVehicleCount": 1,
    "earliestVehicleStartTime": "2023-01-13T17:35:50Z",
    "latestVehicleEndTime": "2023-01-13T18:17:24Z",
    "totalCost": 73.661111111111111,
    "costs": {
      "model.vehicles.cost_per_hour": 27.711111111111112,
      "model.vehicles.cost_per_kilometer": 45.95
    }
  }
}
    

每批货件的送达时间 startTime 都在其要求的窗口内:

  • shipments[2] 在 17:50 送达(在 17:30 - 18:00 的送达时间范围内)。
  • shipments[1] 在 18:00 送达(在 18:00 - 18:30 的时间范围内)。
  • shipments[0] 在 18:07 送达(在 18:00 - 19:00 的送达时段内)。

场景 2:因时间窗口而跳过发货

以下示例展示了一个场景,其中某批货件的时间窗口与其他货件的时间窗口相差太远,因此对于优化器而言,跳过该货件并支付 penaltyCost 费用更具成本效益。

示例请求

此请求与第一种情形相同,不同之处在于其中一笔货件的送货时间段在当天晚些时候。

  • shipments[1]送货时间现为:21:00 - 21:30

查看无法满足时间窗口要求的请求示例

{
  "populatePolylines": false,
  "populateTransitionPolylines": false,
  "model": {
    "globalStartTime": "2023-01-13T16:00:00Z",
    "globalEndTime": "2023-01-14T16:00:00Z",
    "shipments": [
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789456,
              "longitude": -122.390192
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T18:00:00Z",
                "endTime": "2023-01-13T19:00:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 100.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789116,
              "longitude": -122.395080
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T21:00:00Z",
                "endTime": "2023-01-13T21:30:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 20.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.795242,
              "longitude": -122.399347
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T17:30:00Z",
                "endTime": "2023-01-13T18:00:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 50.0
      }
    ],
    "vehicles": [
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 40.0,
        "costPerKilometer": 10.0
      }
    ]
  }
}
    

示例响应

响应显示优化器跳过了 shipment[1]。之所以会发生这种情况,是因为要配送该货物,车辆必须额外行驶数小时,而这段时间的计算成本高于货物的 penaltyCost(即 20.0)。

查看示例请求的响应,其中包含跳过配送的时间窗口

{
  "routes": [
    {
      "vehicleStartTime": "2023-01-13T17:37:49Z",
      "vehicleEndTime": "2023-01-13T18:09:49Z",
      "visits": [
        {
          "isPickup": true,
          "startTime": "2023-01-13T17:37:49Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 2,
          "isPickup": true,
          "startTime": "2023-01-13T17:40:19Z",
          "detour": "150s"
        },
        {
          "shipmentIndex": 2,
          "startTime": "2023-01-13T17:49:38Z",
          "detour": "0s"
        },
        {
          "startTime": "2023-01-13T18:00:00Z",
          "detour": "946s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:37:49Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:40:19Z"
        },
        {
          "travelDuration": "409s",
          "travelDistanceMeters": 1371,
          "waitDuration": "0s",
          "totalDuration": "409s",
          "startTime": "2023-01-13T17:42:49Z"
        },
        {
          "travelDuration": "372s",
          "travelDistanceMeters": 1348,
          "waitDuration": "0s",
          "totalDuration": "372s",
          "startTime": "2023-01-13T17:53:48Z"
        },
        {
          "travelDuration": "339s",
          "travelDistanceMeters": 1276,
          "waitDuration": "0s",
          "totalDuration": "339s",
          "startTime": "2023-01-13T18:04:10Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 2,
        "travelDuration": "1120s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "800s",
        "totalDuration": "1920s",
        "travelDistanceMeters": 3995
      },
      "routeCosts": {
        "model.vehicles.cost_per_kilometer": 39.95,
        "model.vehicles.cost_per_hour": 21.333333333333332
      },
      "routeTotalCost": 61.283333333333331
    }
  ],
  "skippedShipments": [
    {
      "index": 1
    }
  ],
  "metrics": {
    "aggregatedRouteMetrics": {
      "performedShipmentCount": 2,
      "travelDuration": "1120s",
      "waitDuration": "0s",
      "delayDuration": "0s",
      "breakDuration": "0s",
      "visitDuration": "800s",
      "totalDuration": "1920s",
      "travelDistanceMeters": 3995
    },
    "usedVehicleCount": 1,
    "earliestVehicleStartTime": "2023-01-13T17:37:49Z",
    "latestVehicleEndTime": "2023-01-13T18:09:49Z",
    "totalCost": 81.283333333333331,
    "costs": {
      "model.shipments.penalty_cost": 20,
      "model.vehicles.cost_per_hour": 21.333333333333332,
      "model.vehicles.cost_per_kilometer": 39.95
    }
  }
}
    

响应中的 skippedShipments 数组表明,未执行 index: 1 的配送,这会影响以下费用参数:

场景 3:使用软时间窗口

以下示例展示了如何使用软时间窗口,该窗口允许优化器在指定时间范围之外安排配送,但会产生费用。

如需大致了解此功能,请参阅“时间窗口”关键概念文档中的软时间窗口部分。

示例请求

此请求通过将 shipment[1] 的硬时间窗口更改为软时间窗口来修改之前的方案。这是通过使用 softStartTime 并提供 costPerHourBeforeSoftStartTime 来完成的。

shipment[1] 现在具有 21:00 的 softStartTime 和 2.0 的 costPerHourBeforeSoftStartTime。这意味着,每提前 1 小时送达,就会受到一次处罚。

查看包含硬性和软性时间窗口的请求示例

{
  "populatePolylines": false,
  "populateTransitionPolylines": false,
  "model": {
    "globalStartTime": "2023-01-13T16:00:00Z",
    "globalEndTime": "2023-01-14T16:00:00Z",
    "shipments": [
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789456,
              "longitude": -122.390192
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T18:00:00Z",
                "softEndTime": "2023-01-13T19:00:00Z",
                "costPerHourAfterSoftEndTime": 2.0
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 100.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789116,
              "longitude": -122.395080
            },
            "duration": "250s",
            "timeWindows": [
              {
                "softStartTime": "2023-01-13T21:00:00Z",
                "endTime": "2023-01-13T21:30:00Z",
                "costPerHourBeforeSoftStartTime": 2.0
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 20.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.795242,
              "longitude": -122.399347
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T17:30:00Z",
                "softEndTime": "2023-01-13T18:00:00Z",
                "costPerHourAfterSoftEndTime": 2.0
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 50.0
      }
    ],
    "vehicles": [
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 40.0,
        "costPerKilometer": 10.0
      }
    ]
  }
}
    

示例响应

响应显示,优化器现在会安排所有这三批货件。它将 shipment[1] 的送达时间安排在 21:00 softStartTime 之前,明显提前。这是最具成本效益的解决方案,因为违反软时间窗口的成本低于跳过配送的 penaltyCost,也低于让车辆在时间窗口内等待配送的成本。

查看对包含硬性和软性时间窗口的示例请求的响应

{
  "routes": [
    {
      "vehicleStartTime": "2023-01-13T17:48:35Z",
      "vehicleEndTime": "2023-01-13T18:24:28Z",
      "visits": [
        {
          "isPickup": true,
          "startTime": "2023-01-13T17:48:35Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 1,
          "isPickup": true,
          "startTime": "2023-01-13T17:51:05Z",
          "detour": "150s"
        },
        {
          "shipmentIndex": 2,
          "isPickup": true,
          "startTime": "2023-01-13T17:53:35Z",
          "detour": "300s"
        },
        {
          "startTime": "2023-01-13T18:00:00Z",
          "detour": "300s"
        },
        {
          "shipmentIndex": 1,
          "startTime": "2023-01-13T18:07:42Z",
          "detour": "493s"
        },
        {
          "shipmentIndex": 2,
          "startTime": "2023-01-13T18:17:27Z",
          "detour": "873s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:48:35Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:51:05Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:53:35Z"
        },
        {
          "travelDuration": "235s",
          "travelDistanceMeters": 795,
          "waitDuration": "0s",
          "totalDuration": "235s",
          "startTime": "2023-01-13T17:56:05Z"
        },
        {
          "travelDuration": "212s",
          "travelDistanceMeters": 791,
          "waitDuration": "0s",
          "totalDuration": "212s",
          "startTime": "2023-01-13T18:04:10Z"
        },
        {
          "travelDuration": "335s",
          "travelDistanceMeters": 1204,
          "waitDuration": "0s",
          "totalDuration": "335s",
          "startTime": "2023-01-13T18:11:52Z"
        },
        {
          "travelDuration": "171s",
          "travelDistanceMeters": 665,
          "waitDuration": "0s",
          "totalDuration": "171s",
          "startTime": "2023-01-13T18:21:37Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 3,
        "travelDuration": "953s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "1200s",
        "totalDuration": "2153s",
        "travelDistanceMeters": 3455
      },
      "routeCosts": {
        "model.shipments.deliveries.time_windows.cost_per_hour_after_soft_end_time": 0.58166666666666667,
        "model.shipments.deliveries.time_windows.cost_per_hour_before_soft_start_time": 5.7433333333333332,
        "model.vehicles.cost_per_hour": 23.922222222222221,
        "model.vehicles.cost_per_kilometer": 34.55
      },
      "routeTotalCost": 64.797222222222217
    }
  ],
  "metrics": {
    "aggregatedRouteMetrics": {
      "performedShipmentCount": 3,
      "travelDuration": "953s",
      "waitDuration": "0s",
      "delayDuration": "0s",
      "breakDuration": "0s",
      "visitDuration": "1200s",
      "totalDuration": "2153s",
      "travelDistanceMeters": 3455
    },
    "usedVehicleCount": 1,
    "earliestVehicleStartTime": "2023-01-13T17:48:35Z",
    "latestVehicleEndTime": "2023-01-13T18:24:28Z",
    "totalCost": 64.797222222222217,
    "costs": {
      "model.vehicles.cost_per_kilometer": 34.55,
      "model.shipments.deliveries.time_windows.cost_per_hour_before_soft_start_time": 5.7433333333333332,
      "model.shipments.deliveries.time_windows.cost_per_hour_after_soft_end_time": 0.58166666666666667,
      "model.vehicles.cost_per_hour": 23.922222222222221
    }
  }
}
    

软时间窗口可带来更出色的解决方案,具体体现在以下改进方面:

  • 所有 3 次配送都已安排好,不会跳过任何一次。
  • totalCost 现在为 64.79,低于之前解决方案的费用 81.28。
  • routeCosts 对象包含在 softStartTime 之前近 3 小时送达 shipment[1] 的费用 5.74。此费用低于 20.0 的 penaltyCost,因此是最具成本效益的选项。