iSDAsoil extractable Aluminium
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Ketersediaan Set Data
2001-01-01T00:00:00Z–2017-01-01T00:00:00Z
Penyedia Set Data
iSDA
Cuplikan Earth Engine
ee.Image("ISDASOIL/Africa/v1/aluminium_extractable")
open_in_new
Tag
africa
aluminium
isda
soil
Deskripsi
Aluminium yang dapat diekstrak pada kedalaman tanah 0-20 cm dan 20-50 cm, rata-rata dan standar deviasi yang diprediksi.
Nilai piksel harus ditransformasikan kembali dengan exp(x/10)-1
.
Prediksi properti tanah dibuat oleh
Innovative Solutions for Decision Agriculture Ltd. (iSDA)
pada ukuran piksel 30 m menggunakan machine learning yang dipadukan dengan data penginderaan jauh
dan set pelatihan lebih dari 100.000 sampel tanah yang dianalisis.
Informasi selengkapnya dapat ditemukan di
FAQ dan
dokumentasi informasi teknis . Untuk mengirimkan masalah atau meminta dukungan, buka
situs iSDAsoil .
Di area hutan lebat (umumnya di Afrika tengah), akurasi model rendah dan oleh karena itu artefak seperti banding (garis-garis) mungkin terlihat.
Band
Ukuran Piksel
30 meter
Band
Nama
Unit
Min
Maks
Ukuran Piksel
Deskripsi
mean_0_20
ppm
3
80
meter
Aluminium, dapat diekstraksi, rata-rata yang diprediksi pada kedalaman 0-20 cm
mean_20_50
ppm
4
79
meter
Aluminium, dapat diekstrak, rata-rata yang diprediksi pada kedalaman 20-50 cm
stdev_0_20
ppm
1
53
meter
Aluminium, dapat diekstraksi, simpangan baku pada kedalaman 0-20 cm
stdev_20_50
ppm
1
51
meter
Aluminium, dapat diekstraksi, standar deviasi pada kedalaman 20-50 cm
Persyaratan Penggunaan
Persyaratan Penggunaan
CC-BY-4.0
Kutipan
Hengl, T., Miller, M.A.E., Križan, J., et al. African soil properties and nutrients
mapped at 30 m spatial resolution using two-scale ensemble machine learning.
Sci Rep 11, 6130 (2021).
doi:10.1038/s41598-021-85639-y
Hengl, T., Miller, M.A.E., Križan, J., et al. African soil properties and nutrients
mapped at 30 m spatial resolution using two-scale ensemble machine learning.
Sci Rep 11, 6130 (2021).
doi:10.1038/s41598-021-85639-y
Menjelajahi dengan Earth Engine
Penting:
Earth Engine adalah platform untuk analisis ilmiah dan visualisasi set data geospasial berskala petabyte, baik untuk manfaat publik maupun untuk pengguna bisnis dan pemerintah.
Earth Engine dapat digunakan secara gratis untuk riset, pendidikan, dan penggunaan lembaga nonprofit. Untuk memulai, daftar untuk mendapatkan akses Earth Engine.
Code Editor (JavaScript)
var mean_0_20 =
'<RasterSymbolizer>' +
'<ColorMap type="ramp">' +
'<ColorMapEntry color="#000004" label="0-21.2" opacity="1" quantity="31"/>' +
'<ColorMapEntry color="#0C0927" label="21.2-35.6" opacity="1" quantity="36"/>' +
'<ColorMapEntry color="#231151" label="35.6-53.6" opacity="1" quantity="40"/>' +
'<ColorMapEntry color="#410F75" label="53.6-65.7" opacity="1" quantity="42"/>' +
'<ColorMapEntry color="#5F187F" label="65.7-72.7" opacity="1" quantity="43"/>' +
'<ColorMapEntry color="#7B2382" label="72.7-80.5" opacity="1" quantity="44"/>' +
'<ColorMapEntry color="#982D80" label="80.5-89" opacity="1" quantity="45"/>' +
'<ColorMapEntry color="#B63679" label="89-98.5" opacity="1" quantity="46"/>' +
'<ColorMapEntry color="#D3436E" label="98.5-108.9" opacity="1" quantity="47"/>' +
'<ColorMapEntry color="#EB5760" label="108.9-120.5" opacity="1" quantity="48"/>' +
'<ColorMapEntry color="#F8765C" label="120.5-133.3" opacity="1" quantity="49"/>' +
'<ColorMapEntry color="#FD9969" label="133.3-147.4" opacity="1" quantity="50"/>' +
'<ColorMapEntry color="#FEBA80" label="147.4-163" opacity="1" quantity="51"/>' +
'<ColorMapEntry color="#FDDC9E" label="163-199.3" opacity="1" quantity="53"/>' +
'<ColorMapEntry color="#FCFDBF" label="199.3-1800" opacity="1" quantity="55"/>' +
'</ColorMap>' +
'<ContrastEnhancement/>' +
'</RasterSymbolizer>' ;
var mean_20_50 =
'<RasterSymbolizer>' +
'<ColorMap type="ramp">' +
'<ColorMapEntry color="#000004" label="0-21.2" opacity="1" quantity="31"/>' +
'<ColorMapEntry color="#0C0927" label="21.2-35.6" opacity="1" quantity="36"/>' +
'<ColorMapEntry color="#231151" label="35.6-53.6" opacity="1" quantity="40"/>' +
'<ColorMapEntry color="#410F75" label="53.6-65.7" opacity="1" quantity="42"/>' +
'<ColorMapEntry color="#5F187F" label="65.7-72.7" opacity="1" quantity="43"/>' +
'<ColorMapEntry color="#7B2382" label="72.7-80.5" opacity="1" quantity="44"/>' +
'<ColorMapEntry color="#982D80" label="80.5-89" opacity="1" quantity="45"/>' +
'<ColorMapEntry color="#B63679" label="89-98.5" opacity="1" quantity="46"/>' +
'<ColorMapEntry color="#D3436E" label="98.5-108.9" opacity="1" quantity="47"/>' +
'<ColorMapEntry color="#EB5760" label="108.9-120.5" opacity="1" quantity="48"/>' +
'<ColorMapEntry color="#F8765C" label="120.5-133.3" opacity="1" quantity="49"/>' +
'<ColorMapEntry color="#FD9969" label="133.3-147.4" opacity="1" quantity="50"/>' +
'<ColorMapEntry color="#FEBA80" label="147.4-163" opacity="1" quantity="51"/>' +
'<ColorMapEntry color="#FDDC9E" label="163-199.3" opacity="1" quantity="53"/>' +
'<ColorMapEntry color="#FCFDBF" label="199.3-1800" opacity="1" quantity="55"/>' +
'</ColorMap>' +
'<ContrastEnhancement/>' +
'</RasterSymbolizer>' ;
var stdev_0_20 =
'<RasterSymbolizer>' +
'<ColorMap type="ramp">' +
'<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="5"/>' +
'<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="9"/>' +
'<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="10"/>' +
'<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="12"/>' +
'<ColorMapEntry color="#440154" label="high" opacity="1" quantity="14"/>' +
'</ColorMap>' +
'<ContrastEnhancement/>' +
'</RasterSymbolizer>' ;
var stdev_20_50 =
'<RasterSymbolizer>' +
'<ColorMap type="ramp">' +
'<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="5"/>' +
'<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="9"/>' +
'<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="10"/>' +
'<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="12"/>' +
'<ColorMapEntry color="#440154" label="high" opacity="1" quantity="14"/>' +
'</ColorMap>' +
'<ContrastEnhancement/>' +
'</RasterSymbolizer>' ;
Map . setCenter ( 25 , - 3 , 2 );
var raw = ee . Image ( "ISDASOIL/Africa/v1/aluminium_extractable" );
Map . addLayer (
raw . select ( 0 ). sldStyle ( mean_0_20 ), {},
"Aluminium, extractable, mean visualization, 0-20 cm" );
Map . addLayer (
raw . select ( 1 ). sldStyle ( mean_20_50 ), {},
"Aluminium, extractable, mean visualization, 20-50 cm" );
Map . addLayer (
raw . select ( 2 ). sldStyle ( stdev_0_20 ), {},
"Aluminium, extractable, stdev visualization, 0-20 cm" );
Map . addLayer (
raw . select ( 3 ). sldStyle ( stdev_20_50 ), {},
"Aluminium, extractable, stdev visualization, 20-50 cm" );
var converted = raw . divide ( 10 ). exp (). subtract ( 1 );
Map . addLayer (
converted . select ( 0 ), { min : 0 , max : 100 },
"Aluminium, extractable, mean, 0-20 cm" );
Buka di Editor Kode
[null,null,[],[[["\u003cp\u003eThis dataset provides predictions for extractable aluminum in African soil at two depths (0-20 cm and 20-50 cm), including both mean and standard deviation values.\u003c/p\u003e\n"],["\u003cp\u003eThe data covers the period from 2001 to 2017 and was produced by Innovative Solutions for Decision Agriculture Ltd.(iSDA) using machine learning and remote sensing techniques.\u003c/p\u003e\n"],["\u003cp\u003ePixel values are initially transformed and require back-transformation using the formula \u003ccode\u003eexp(x/10)-1\u003c/code\u003e to obtain actual extractable aluminum values in ppm (parts per million).\u003c/p\u003e\n"],["\u003cp\u003eThe dataset is available at a 30-meter resolution and can be accessed and analyzed using Google Earth Engine.\u003c/p\u003e\n"],["\u003cp\u003eUsers should be aware that model accuracy is lower in dense jungle areas, potentially leading to visual artifacts like banding.\u003c/p\u003e\n"]]],[],null,["# iSDAsoil extractable Aluminium\n\nDataset Availability\n: 2001-01-01T00:00:00Z--2017-01-01T00:00:00Z\n\nDataset Provider\n:\n\n\n [iSDA](https://isda-africa.com/)\n\nTags\n:\n[africa](/earth-engine/datasets/tags/africa) [aluminium](/earth-engine/datasets/tags/aluminium) [isda](/earth-engine/datasets/tags/isda) [soil](/earth-engine/datasets/tags/soil) \n\n#### Description\n\nExtractable aluminium at soil depths of 0-20 cm and 20-50 cm,\npredicted mean and standard deviation.\n\nPixel values must be back-transformed with `exp(x/10)-1`.\n\nSoil property predictions were made by\n[Innovative Solutions for Decision Agriculture Ltd. (iSDA)](https://isda-africa.com/)\nat 30 m pixel size using machine learning coupled with remote sensing data\nand a training set of over 100,000 analyzed soil samples.\n\nFurther information can be found in the\n[FAQ](https://www.isda-africa.com/isdasoil/faq/) and\n[technical information documentation](https://www.isda-africa.com/isdasoil/technical-information/). To submit an issue or request support, please visit\n[the iSDAsoil site](https://isda-africa.com/isdasoil).\n\nIn areas of dense jungle (generally over central Africa), model accuracy is\nlow and therefore artifacts such as banding (striping) might be seen.\n\n### Bands\n\n\n**Pixel Size**\n\n30 meters\n\n**Bands**\n\n| Name | Units | Min | Max | Pixel Size | Description |\n|---------------|-------|-----|-----|------------|--------------------------------------------------------------|\n| `mean_0_20` | ppm | 3 | 80 | meters | Aluminium, extractable, predicted mean at 0-20 cm depth |\n| `mean_20_50` | ppm | 4 | 79 | meters | Aluminium, extractable, predicted mean at 20-50 cm depth |\n| `stdev_0_20` | ppm | 1 | 53 | meters | Aluminium, extractable, standard deviation at 0-20 cm depth |\n| `stdev_20_50` | ppm | 1 | 51 | meters | Aluminium, extractable, standard deviation at 20-50 cm depth |\n\n### Terms of Use\n\n**Terms of Use**\n\n[CC-BY-4.0](https://spdx.org/licenses/CC-BY-4.0.html)\n\n### Citations\n\nCitations:\n\n- Hengl, T., Miller, M.A.E., Križan, J., et al. African soil properties and nutrients\n mapped at 30 m spatial resolution using two-scale ensemble machine learning.\n Sci Rep 11, 6130 (2021).\n [doi:10.1038/s41598-021-85639-y](https://doi.org/10.1038/s41598-021-85639-y)\n- Hengl, T., Miller, M.A.E., Križan, J., et al. African soil properties and nutrients\n mapped at 30 m spatial resolution using two-scale ensemble machine learning.\n Sci Rep 11, 6130 (2021).\n [doi:10.1038/s41598-021-85639-y](https://doi.org/10.1038/s41598-021-85639-y)\n\n### DOIs\n\n- \u003chttps://doi.org/10.1038/s41598-021-85639-y\u003e\n\n### Explore with Earth Engine\n\n| **Important:** Earth Engine is a platform for petabyte-scale scientific analysis and visualization of geospatial datasets, both for public benefit and for business and government users. Earth Engine is free to use for research, education, and nonprofit use. To get started, please [register for Earth Engine access.](https://console.cloud.google.com/earth-engine)\n\n### Code Editor (JavaScript)\n\n```javascript\nvar mean_0_20 =\n'\u003cRasterSymbolizer\u003e' +\n '\u003cColorMap type=\"ramp\"\u003e' +\n '\u003cColorMapEntry color=\"#000004\" label=\"0-21.2\" opacity=\"1\" quantity=\"31\"/\u003e' +\n '\u003cColorMapEntry color=\"#0C0927\" label=\"21.2-35.6\" opacity=\"1\" quantity=\"36\"/\u003e' +\n '\u003cColorMapEntry color=\"#231151\" label=\"35.6-53.6\" opacity=\"1\" quantity=\"40\"/\u003e' +\n '\u003cColorMapEntry color=\"#410F75\" label=\"53.6-65.7\" opacity=\"1\" quantity=\"42\"/\u003e' +\n '\u003cColorMapEntry color=\"#5F187F\" label=\"65.7-72.7\" opacity=\"1\" quantity=\"43\"/\u003e' +\n '\u003cColorMapEntry color=\"#7B2382\" label=\"72.7-80.5\" opacity=\"1\" quantity=\"44\"/\u003e' +\n '\u003cColorMapEntry color=\"#982D80\" label=\"80.5-89\" opacity=\"1\" quantity=\"45\"/\u003e' +\n '\u003cColorMapEntry color=\"#B63679\" label=\"89-98.5\" opacity=\"1\" quantity=\"46\"/\u003e' +\n '\u003cColorMapEntry color=\"#D3436E\" label=\"98.5-108.9\" opacity=\"1\" quantity=\"47\"/\u003e' +\n '\u003cColorMapEntry color=\"#EB5760\" label=\"108.9-120.5\" opacity=\"1\" quantity=\"48\"/\u003e' +\n '\u003cColorMapEntry color=\"#F8765C\" label=\"120.5-133.3\" opacity=\"1\" quantity=\"49\"/\u003e' +\n '\u003cColorMapEntry color=\"#FD9969\" label=\"133.3-147.4\" opacity=\"1\" quantity=\"50\"/\u003e' +\n '\u003cColorMapEntry color=\"#FEBA80\" label=\"147.4-163\" opacity=\"1\" quantity=\"51\"/\u003e' +\n '\u003cColorMapEntry color=\"#FDDC9E\" label=\"163-199.3\" opacity=\"1\" quantity=\"53\"/\u003e' +\n '\u003cColorMapEntry color=\"#FCFDBF\" label=\"199.3-1800\" opacity=\"1\" quantity=\"55\"/\u003e' +\n '\u003c/ColorMap\u003e' +\n '\u003cContrastEnhancement/\u003e' +\n'\u003c/RasterSymbolizer\u003e';\n\nvar mean_20_50 =\n'\u003cRasterSymbolizer\u003e' +\n '\u003cColorMap type=\"ramp\"\u003e' +\n '\u003cColorMapEntry color=\"#000004\" label=\"0-21.2\" opacity=\"1\" quantity=\"31\"/\u003e' +\n '\u003cColorMapEntry color=\"#0C0927\" label=\"21.2-35.6\" opacity=\"1\" quantity=\"36\"/\u003e' +\n '\u003cColorMapEntry color=\"#231151\" label=\"35.6-53.6\" opacity=\"1\" quantity=\"40\"/\u003e' +\n '\u003cColorMapEntry color=\"#410F75\" label=\"53.6-65.7\" opacity=\"1\" quantity=\"42\"/\u003e' +\n '\u003cColorMapEntry color=\"#5F187F\" label=\"65.7-72.7\" opacity=\"1\" quantity=\"43\"/\u003e' +\n '\u003cColorMapEntry color=\"#7B2382\" label=\"72.7-80.5\" opacity=\"1\" quantity=\"44\"/\u003e' +\n '\u003cColorMapEntry color=\"#982D80\" label=\"80.5-89\" opacity=\"1\" quantity=\"45\"/\u003e' +\n '\u003cColorMapEntry color=\"#B63679\" label=\"89-98.5\" opacity=\"1\" quantity=\"46\"/\u003e' +\n '\u003cColorMapEntry color=\"#D3436E\" label=\"98.5-108.9\" opacity=\"1\" quantity=\"47\"/\u003e' +\n '\u003cColorMapEntry color=\"#EB5760\" label=\"108.9-120.5\" opacity=\"1\" quantity=\"48\"/\u003e' +\n '\u003cColorMapEntry color=\"#F8765C\" label=\"120.5-133.3\" opacity=\"1\" quantity=\"49\"/\u003e' +\n '\u003cColorMapEntry color=\"#FD9969\" label=\"133.3-147.4\" opacity=\"1\" quantity=\"50\"/\u003e' +\n '\u003cColorMapEntry color=\"#FEBA80\" label=\"147.4-163\" opacity=\"1\" quantity=\"51\"/\u003e' +\n '\u003cColorMapEntry color=\"#FDDC9E\" label=\"163-199.3\" opacity=\"1\" quantity=\"53\"/\u003e' +\n '\u003cColorMapEntry color=\"#FCFDBF\" label=\"199.3-1800\" opacity=\"1\" quantity=\"55\"/\u003e' +\n '\u003c/ColorMap\u003e' +\n '\u003cContrastEnhancement/\u003e' +\n'\u003c/RasterSymbolizer\u003e';\n\nvar stdev_0_20 =\n'\u003cRasterSymbolizer\u003e' +\n '\u003cColorMap type=\"ramp\"\u003e' +\n '\u003cColorMapEntry color=\"#fde725\" label=\"low\" opacity=\"1\" quantity=\"5\"/\u003e' +\n '\u003cColorMapEntry color=\"#5dc962\" label=\" \" opacity=\"1\" quantity=\"9\"/\u003e' +\n '\u003cColorMapEntry color=\"#20908d\" label=\" \" opacity=\"1\" quantity=\"10\"/\u003e' +\n '\u003cColorMapEntry color=\"#3a528b\" label=\" \" opacity=\"1\" quantity=\"12\"/\u003e' +\n '\u003cColorMapEntry color=\"#440154\" label=\"high\" opacity=\"1\" quantity=\"14\"/\u003e' +\n '\u003c/ColorMap\u003e' +\n '\u003cContrastEnhancement/\u003e' +\n'\u003c/RasterSymbolizer\u003e';\n\nvar stdev_20_50 =\n'\u003cRasterSymbolizer\u003e' +\n '\u003cColorMap type=\"ramp\"\u003e' +\n '\u003cColorMapEntry color=\"#fde725\" label=\"low\" opacity=\"1\" quantity=\"5\"/\u003e' +\n '\u003cColorMapEntry color=\"#5dc962\" label=\" \" opacity=\"1\" quantity=\"9\"/\u003e' +\n '\u003cColorMapEntry color=\"#20908d\" label=\" \" opacity=\"1\" quantity=\"10\"/\u003e' +\n '\u003cColorMapEntry color=\"#3a528b\" label=\" \" opacity=\"1\" quantity=\"12\"/\u003e' +\n '\u003cColorMapEntry color=\"#440154\" label=\"high\" opacity=\"1\" quantity=\"14\"/\u003e' +\n '\u003c/ColorMap\u003e' +\n '\u003cContrastEnhancement/\u003e' +\n'\u003c/RasterSymbolizer\u003e';\n\nMap.setCenter(25, -3, 2);\n\nvar raw = ee.Image(\"ISDASOIL/Africa/v1/aluminium_extractable\");\nMap.addLayer(\n raw.select(0).sldStyle(mean_0_20), {},\n \"Aluminium, extractable, mean visualization, 0-20 cm\");\nMap.addLayer(\n raw.select(1).sldStyle(mean_20_50), {},\n \"Aluminium, extractable, mean visualization, 20-50 cm\");\nMap.addLayer(\n raw.select(2).sldStyle(stdev_0_20), {},\n \"Aluminium, extractable, stdev visualization, 0-20 cm\");\nMap.addLayer(\n raw.select(3).sldStyle(stdev_20_50), {},\n \"Aluminium, extractable, stdev visualization, 20-50 cm\");\n\nvar converted = raw.divide(10).exp().subtract(1);\nMap.addLayer(\n converted.select(0), {min: 0, max: 100},\n \"Aluminium, extractable, mean, 0-20 cm\");\n```\n[Open in Code Editor](https://code.earthengine.google.com/?scriptPath=Examples:Datasets/ISDASOIL/ISDASOIL_Africa_v1_aluminium_extractable) \n[iSDAsoil extractable Aluminium](/earth-engine/datasets/catalog/ISDASOIL_Africa_v1_aluminium_extractable) \nExtractable aluminium at soil depths of 0-20 cm and 20-50 cm, predicted mean and standard deviation. Pixel values must be back-transformed with exp(x/10)-1. Soil property predictions were made by Innovative Solutions for Decision Agriculture Ltd. (iSDA) at 30 m pixel size using machine learning coupled with remote sensing data and ... \nISDASOIL/Africa/v1/aluminium_extractable, africa,aluminium,isda,soil \n2001-01-01T00:00:00Z/2017-01-01T00:00:00Z \n-35.22 -31.46 37.98 57.08 \nGoogle Earth Engine \nhttps://developers.google.com/earth-engine/datasets\n\n- [https://doi.org/10.1038/s41598-021-85639-y](https://doi.org/https://isda-africa.com/)\n- [https://doi.org/10.1038/s41598-021-85639-y](https://doi.org/https://developers.google.com/earth-engine/datasets/catalog/ISDASOIL_Africa_v1_aluminium_extractable)"]]