- Veri Kümesi Kullanılabilirliği
- 2001-01-01T00:00:00Z–2017-01-01T00:00:00Z
- Veri Kümesi Sağlayıcı
- iSDA
- Etiketler
Açıklama
0-20 cm ve 20-50 cm toprak derinliklerindeki kum içeriği, tahmin edilen ortalama ve standart sapma. Yoğun ormanlık alanlarda (genellikle Orta Afrika'nın üzerinde) model doğruluğu düşüktür ve bu nedenle bantlama (şeritlenme) gibi yapaylıklar görülebilir.
Toprak özelliği tahminleri,uzaktan algılama verileri ve 100.000'den fazla analiz edilmiş toprak örneğinden oluşan bir eğitim setiyle birlikte makine öğrenimi kullanılarak 30 m piksel boyutunda Innovative Solutions for Decision Agriculture Ltd. (iSDA) tarafından yapılmıştır.
Daha fazla bilgiyi SSS ve teknik bilgi belgelerinde bulabilirsiniz. Sorun göndermek veya destek isteğinde bulunmak için lütfen iSDAsoil sitesini ziyaret edin.
Bantlar
Piksel Boyutu
30 metre
Bantlar
| Ad | Birimler | Min. | Maks. | Piksel Boyutu | Açıklama |
|---|---|---|---|---|---|
mean_0_20 |
% | 2 | 94 | metre | Kum içeriği, 0-20 cm derinlikte tahmin edilen ortalama |
mean_20_50 |
% | 2 | 95 | metre | Kum içeriği, 20-50 cm derinlikte tahmin edilen ortalama |
stdev_0_20 |
% | 0 | 144 | metre | Kum içeriği, 0-20 cm derinlikte standart sapma |
stdev_20_50 |
% | 0 | 143 | metre | Kum içeriği, 20-50 cm derinlikte standart sapma |
Kullanım Şartları
Kullanım Şartları
Alıntılar
Hengl, T., Miller, M.A.E., Križan, J., et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci Rep 11, 6130 (2021). doi:10.1038/s41598-021-85639-y
Earth Engine ile keşfetme
Kod Düzenleyici (JavaScript)
var mean_0_20 = '<RasterSymbolizer>' + '<ColorMap type="ramp">' + '<ColorMapEntry color="#00204D" label="0-31" opacity="1" quantity="31"/>' + '<ColorMapEntry color="#002D6C" label="31-39" opacity="1" quantity="39"/>' + '<ColorMapEntry color="#16396D" label="39-43" opacity="1" quantity="43"/>' + '<ColorMapEntry color="#36476B" label="43-46" opacity="1" quantity="46"/>' + '<ColorMapEntry color="#4B546C" label="46-49" opacity="1" quantity="49"/>' + '<ColorMapEntry color="#5C616E" label="49-52" opacity="1" quantity="52"/>' + '<ColorMapEntry color="#6C6E72" label="52-54" opacity="1" quantity="54"/>' + '<ColorMapEntry color="#7C7B78" label="54-56" opacity="1" quantity="56"/>' + '<ColorMapEntry color="#8E8A79" label="56-58" opacity="1" quantity="58"/>' + '<ColorMapEntry color="#A09877" label="58-60" opacity="1" quantity="60"/>' + '<ColorMapEntry color="#B3A772" label="60-63" opacity="1" quantity="63"/>' + '<ColorMapEntry color="#C6B66B" label="63-65" opacity="1" quantity="65"/>' + '<ColorMapEntry color="#DBC761" label="65-68" opacity="1" quantity="68"/>' + '<ColorMapEntry color="#F0D852" label="68-71" opacity="1" quantity="71"/>' + '<ColorMapEntry color="#FFEA46" label="71-100" opacity="1" quantity="75"/>' + '</ColorMap>' + '<ContrastEnhancement/>' + '</RasterSymbolizer>'; var mean_20_50 = '<RasterSymbolizer>' + '<ColorMap type="ramp">' + '<ColorMapEntry color="#00204D" label="0-31" opacity="1" quantity="31"/>' + '<ColorMapEntry color="#002D6C" label="31-39" opacity="1" quantity="39"/>' + '<ColorMapEntry color="#16396D" label="39-43" opacity="1" quantity="43"/>' + '<ColorMapEntry color="#36476B" label="43-46" opacity="1" quantity="46"/>' + '<ColorMapEntry color="#4B546C" label="46-49" opacity="1" quantity="49"/>' + '<ColorMapEntry color="#5C616E" label="49-52" opacity="1" quantity="52"/>' + '<ColorMapEntry color="#6C6E72" label="52-54" opacity="1" quantity="54"/>' + '<ColorMapEntry color="#7C7B78" label="54-56" opacity="1" quantity="56"/>' + '<ColorMapEntry color="#8E8A79" label="56-58" opacity="1" quantity="58"/>' + '<ColorMapEntry color="#A09877" label="58-60" opacity="1" quantity="60"/>' + '<ColorMapEntry color="#B3A772" label="60-63" opacity="1" quantity="63"/>' + '<ColorMapEntry color="#C6B66B" label="63-65" opacity="1" quantity="65"/>' + '<ColorMapEntry color="#DBC761" label="65-68" opacity="1" quantity="68"/>' + '<ColorMapEntry color="#F0D852" label="68-71" opacity="1" quantity="71"/>' + '<ColorMapEntry color="#FFEA46" label="71-100" opacity="1" quantity="75"/>' + '</ColorMap>' + '<ContrastEnhancement/>' + '</RasterSymbolizer>'; var stdev_0_20 = '<RasterSymbolizer>' + '<ColorMap type="ramp">' + '<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="2"/>' + '<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="3"/>' + '<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="4"/>' + '<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="6"/>' + '<ColorMapEntry color="#440154" label="high" opacity="1" quantity="7"/>' + '</ColorMap>' + '<ContrastEnhancement/>' + '</RasterSymbolizer>'; var stdev_20_50 = '<RasterSymbolizer>' + '<ColorMap type="ramp">' + '<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="2"/>' + '<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="3"/>' + '<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="4"/>' + '<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="6"/>' + '<ColorMapEntry color="#440154" label="high" opacity="1" quantity="7"/>' + '</ColorMap>' + '<ContrastEnhancement/>' + '</RasterSymbolizer>'; var raw = ee.Image("ISDASOIL/Africa/v1/sand_content"); Map.addLayer( raw.select(0).sldStyle(mean_0_20), {}, "Sand content, mean visualization, 0-20 cm"); Map.addLayer( raw.select(1).sldStyle(mean_20_50), {}, "Sand content, mean visualization, 20-50 cm"); Map.addLayer( raw.select(2).sldStyle(stdev_0_20), {}, "Sand content, stdev visualization, 0-20 cm"); Map.addLayer( raw.select(3).sldStyle(stdev_20_50), {}, "Sand content, stdev visualization, 20-50 cm"); var converted = raw.divide(10).exp().subtract(1); var visualization = {min: 0, max: 3000}; Map.setCenter(25, -3, 2); Map.addLayer(converted.select(0), visualization, "Sand content, mean, 0-20 cm");