OpenET CONUS DisALEXI Monthly Evapotranspiration v2.0

Dataset Availability
Dataset Provider
Earth Engine Snippet
conus evapotranspiration gridmet-derived landsat-derived monthly openet water


Atmosphere-Land Exchange Inverse / Disaggregation of the Atmosphere-Land Exchange Inverse (ALEXI/DisALEXI)

DisALEXI was recently ported to Google Earth Engine as part of the OpenET framework and the baseline ALEXI/DisALEXI model structure is described by Anderson et al. (2012, 2018). The ALEXI evapotranspiration (ET) model specifically uses time differential land surface temperature (LST) measurements from geostationary or moderate resolution polar orbiting platforms to generate regional ET maps. DisALEXI then disaggregates the regional ALEXI ET to finer scales using Landsat data (30 m; biweekly) to resolve individual farm fields and other landscape features. Additional information


30 meters


Name Units Description
et mm

DisALEXI ET value

count count

Number of cloud free values

Terms of Use

Terms of Use



  • Anderson, M., Gao, F., Knipper, K., Hain, C., Dulaney, W., Baldocchi, D ., Eichelmann, E., Hemes, K., Yang, Y., Medellin-Azuara, J. and Kustas, W., 2018. Field-scale assessment of land and water use change over the California Delta using remote sensing. Remote Sensing, 10(6), p.889. doi:10.3390/rs10060889

  • Anderson, M.C., Norman, J.M., Mecikalski, J.R., Otkin, J.A. and Kustas, W.P., 2007. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. Journal of Geophysical Research: Atmospheres, 112(D10). doi:10.1029/2006JD007506


Explore with Earth Engine

Code Editor (JavaScript)

var dataset = ee.ImageCollection('OpenET/DISALEXI/CONUS/GRIDMET/MONTHLY/v2_0')
  .filterDate('2020-01-01', '2021-01-01');

// Compute the annual evapotranspiration (ET) as the sum of the monthly ET
// images for the year.
var et ='et').sum();

var visualization = {
  min: 0,
  max: 1400,
  palette: [
    '9e6212', 'ac7d1d', 'ba9829', 'c8b434', 'd6cf40', 'bed44b', '9fcb51',
    '80c256', '61b95c', '42b062', '45b677', '49bc8d', '4dc2a2', '51c8b8',
    '55cece', '4db4ba', '459aa7', '3d8094', '356681', '2d4c6e',

Map.setCenter(-100, 38, 5);

Map.addLayer(et, visualization, 'OpenET DisALEXI Annual ET');
Open in Code Editor