-
GHSL: Global building height 2018 (P2023A)
تعرض مجموعة البيانات المركّبة المكانية هذه التوزيع العالمي لارتفاعات المباني بدقة 100 متر، مع الإشارة إلى العام 2018. بيانات الإدخال المستخدَمة لتوقّع ارتفاعات المباني هي نموذج ALOS Global Digital Surface (30 مترًا) ومهمة NASA Shuttle Radar Topographic Mission … alos building built built-environment builtup copernicus -
GHSL: Global built-up surface 10m (P2023A)
تعرض مجموعة البيانات المركّبة هذه توزيع المساحات المبنية، والتي يتم التعبير عنها بالمتر المربع لكل خلية شبكة بحجم 10 أمتار، لعام 2018 كما لوحظ من بيانات صور S2. تقيس مجموعات البيانات ما يلي: (أ) إجمالي المساحة المبنية، و(ب) المساحة المبنية المخصّصة لخلايا الشبكة من … built built-environment builtup copernicus ghsl jrc -
GHSL: Global built-up surface 1975-2030 (P2023A)
تعرِض مجموعة البيانات المركّبة هذه توزيع المساحات المبنية، ويتم التعبير عنها بالأمتار المربّعة لكل خلية شبكية تبلغ مساحتها 100 متر. تقيس مجموعة البيانات ما يلي: (أ) إجمالي المساحة المبنية، و(ب) المساحة المبنية المخصّصة لخلايا الشبكة ذات الاستخدامات غير السكنية (NRES) بشكل أساسي. يتمّ الاستقراء المكاني والزماني للبيانات أو … built built-environment builtup copernicus ghsl jrc -
GHSL: Global settlement characteristics (10 m) 2018 (P2023A)
تحدِّد مجموعة البيانات المركّبة المكانية هذه المستوطنات البشرية بدرجة دقة تبلغ 10 أمتار، وتوضِّح خصائصها الداخلية من حيث المكونات الوظيفية والمرتبطة بالارتفاع للبيئة المبنية. يمكن العثور على مزيد من المعلومات حول منتجات بيانات GHSL في تقرير حزمة بيانات GHSL لعام 2023. building built builtup copernicus ghsl height -
Tsinghua FROM-GLC Year of Change to Impervious Surface
تحتوي مجموعة البيانات هذه على معلومات عن التغيُّر السنوي لمساحة السطح غير المنفذة للماء على مستوى العالم من عام 1985 إلى عام 2018 بدرجة دقة تبلغ 30 مترًا. تم تحديد التغيير من سطح مسامي إلى سطح غير مسامي باستخدام نهج مجمع للتصنيف الخاضع للإشراف والتحقّق من الاتساق الزمني. يتم تعريف وحدات البكسل غير القابلة للنفاذ على أنّها أكثر من% 50 من المساحة. … المساحة المبنية الكثافة السكانية تسينغهوا المناطق الحضرية
Datasets tagged built in Earth Engine
[null,null,[],[[["\u003cp\u003eThe Global Human Settlement Layer (GHSL) provides datasets characterizing human settlements, including building heights and built-up surfaces, at resolutions ranging from 10m to 100m.\u003c/p\u003e\n"],["\u003cp\u003eGHSL data utilizes various sources like ALOS, SRTM, and Sentinel-2 imagery to model built environments and their functional components.\u003c/p\u003e\n"],["\u003cp\u003eBuilt-up surface datasets within GHSL offer insights into total and non-residential built areas, spanning multiple years and resolutions.\u003c/p\u003e\n"],["\u003cp\u003eThe Tsinghua FROM-GLC dataset provides insights into annual impervious surface changes globally from 1985 to 2018 at a 30m resolution.\u003c/p\u003e\n"]]],[],null,["# Datasets tagged built in Earth Engine\n\n-\n\n |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### GHSL: Global building height 2018 (P2023A)](/earth-engine/datasets/catalog/JRC_GHSL_P2023A_GHS_BUILT_H) |\n | This spatial raster dataset depicts the global distribution of building heights at a resolution of 100 m, referred to the year 2018. The input data used to predict building heights are the ALOS Global Digital Surface Model (30 m), the NASA Shuttle Radar Topographic Mission ... |\n | [alos](/earth-engine/datasets/tags/alos) [building](/earth-engine/datasets/tags/building) [built](/earth-engine/datasets/tags/built) [built-environment](/earth-engine/datasets/tags/built-environment) [builtup](/earth-engine/datasets/tags/builtup) [copernicus](/earth-engine/datasets/tags/copernicus) |\n\n-\n\n |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### GHSL: Global built-up surface 10m (P2023A)](/earth-engine/datasets/catalog/JRC_GHSL_P2023A_GHS_BUILT_S_10m) |\n | This raster dataset depicts the distribution of built-up surfaces, expressed in square metres per 10 m grid cell, for 2018 as observed from the S2 image data. The datasets measure: a) the total built-up surface, and b) the built-up surface allocated to grid cells of ... |\n | [built](/earth-engine/datasets/tags/built) [built-environment](/earth-engine/datasets/tags/built-environment) [builtup](/earth-engine/datasets/tags/builtup) [copernicus](/earth-engine/datasets/tags/copernicus) [ghsl](/earth-engine/datasets/tags/ghsl) [jrc](/earth-engine/datasets/tags/jrc) |\n\n-\n\n |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### GHSL: Global built-up surface 1975-2030 (P2023A)](/earth-engine/datasets/catalog/JRC_GHSL_P2023A_GHS_BUILT_S) |\n | This raster dataset depicts the distribution of built-up surfaces, expressed in square metres per 100 m grid cell. The dataset measures: a) the total built-up surface, and b) the built-up surface allocated to grid cells of predominant non-residential (NRES) use. Data are spatially-temporally interpolated or ... |\n | [built](/earth-engine/datasets/tags/built) [built-environment](/earth-engine/datasets/tags/built-environment) [builtup](/earth-engine/datasets/tags/builtup) [copernicus](/earth-engine/datasets/tags/copernicus) [ghsl](/earth-engine/datasets/tags/ghsl) [jrc](/earth-engine/datasets/tags/jrc) |\n\n-\n\n |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### GHSL: Global settlement characteristics (10 m) 2018 (P2023A)](/earth-engine/datasets/catalog/JRC_GHSL_P2023A_GHS_BUILT_C) |\n | This spatial raster dataset delineates human settlements at 10 m resolution, and describes their inner characteristics in terms of the functional and height-related components of the built environment. More information about the GHSL data products can be found in the GHSL Data Package 2023 report ... |\n | [building](/earth-engine/datasets/tags/building) [built](/earth-engine/datasets/tags/built) [builtup](/earth-engine/datasets/tags/builtup) [copernicus](/earth-engine/datasets/tags/copernicus) [ghsl](/earth-engine/datasets/tags/ghsl) [height](/earth-engine/datasets/tags/height) |\n\n-\n\n |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### Tsinghua FROM-GLC Year of Change to Impervious Surface](/earth-engine/datasets/catalog/Tsinghua_FROM-GLC_GAIA_v10) |\n | This dataset contains annual change information of global impervious surface area from 1985 to 2018 at a 30m resolution. Change from pervious to impervious was determined using a combined approach of supervised classification and temporal consistency checking. Impervious pixels are defined as above 50% impervious. ... |\n | [built](/earth-engine/datasets/tags/built) [population](/earth-engine/datasets/tags/population) [tsinghua](/earth-engine/datasets/tags/tsinghua) [urban](/earth-engine/datasets/tags/urban) |"]]