Google Search के रैंकिंग सिस्टम के बारे में गाइड
Google, अपने-आप काम करने वाले रैंकिंग सिस्टम का इस्तेमाल करता है. ये सिस्टम, हमारे Search इंडेक्स में मौजूद अरबों-खरबों वेब पेजों और अन्य कॉन्टेंट के लिए बहुत सारे फ़ैक्टर और सिग्नल को ध्यान में रखते हैं, ताकि आपको कुछ ही सेकंड में सटीक और मददगार नतीजे मिल सकें. यह पेज एक गाइड है, जिससे आपको हमारे बेहतरीन रैंकिंग सिस्टम को समझने में मदद मिलती है. इस गाइड में कुछ ऐसे सिस्टम के बारे में बताया गया है जो हमारे मुख्य रैंकिंग सिस्टम का हिस्सा हैं. ये सिस्टम, उन टेक्नोलॉजी का इस्तेमाल करते हैं जो क्वेरी के हिसाब से खोज के नतीजे दिखाती हैं. इस गाइड में कुछ ऐसे सिस्टम के बारे में भी बताया गया है जो रैंकिंग की खास ज़रूरतों से जुड़े हैं.
हमारे रैंकिंग सिस्टम, पेज के लेवल पर काम करने के लिए डिज़ाइन किए गए हैं. इसके लिए, कई तरह के सिग्नल और सिस्टम इस्तेमाल किए जाते हैं, ताकि यह पता चल सके कि किसी पेज को कैसे रैंक किया जाए. पूरी साइट के लिए मिलने वाले सिग्नल और क्लासिफ़ायर भी इस्तेमाल किए जाते हैं. इससे हमें पेजों पर मौजूद कॉन्टेंट को समझने में मदद मिलती है. पूरी साइट के लिए कुछ अच्छे सिग्नल मिलने का मतलब यह नहीं है कि साइट के पूरे कॉन्टेंट को हमेशा अच्छी रैंकिंग मिलेगी. ठीक उसी तरह, पूरी साइट के लिए कुछ खराब सिग्नल मिलने का मतलब यह नहीं है कि साइट के पूरे कॉन्टेंट को खराब रैंकिंग मिलेगी.
हम अपने रैंकिंग सिस्टम को लगातार बेहतर बनाने के लिए, उनकी गहराई से जांच और आकलन करते हैं. साथ ही, ज़रूरी होने पर रैंकिंग सिस्टम से जुड़े अपडेट की सूचना, कॉन्टेंट क्रिएटर्स और अन्य लोगों को देते हैं.
Search के काम करने का तरीका बताने वाली साइट पर जाएं. इससे आपको यह जानकारी मिलेगी कि हमारे रैकिंग सिस्टम अन्य प्रोसेस के साथ मिलकर कैसे काम करते हैं, ताकि Google Search दुनिया भर की जानकारी इकट्ठा करे और उसे सभी तक पहुंचाने और इस्तेमाल करने लायक बनाने के हमारे मकसद को पूरा कर सके.
BERT
बाईडायरेक्शनल एन्कोडर रिप्रज़ेंटेशंस फ़्रॉम ट्रांसफ़ॉर्मर्स (BERT) एक एआई (AI) सिस्टम है, जिसका इस्तेमाल Google करता है. इससे यह समझने में मदद मिलती है कि शब्दों के कॉम्बिनेशन कैसे अलग-अलग मतलब और मकसद बताते हैं.
मुसीबत की चेतावनी देने वाले सिस्टम
Google ने ऐसे सिस्टम डेवलप किए हैं जो मुसीबत में मददगार और समय पर जानकारी देते हैं. भले ही, इसमें निजी परेशानियां, प्राकृतिक आपदाएं या अन्य गंभीर मुसीबत की स्थितियां शामिल हों:
- निजी परेशानियां: हमारे सिस्टम, लोगों के लिए भरोसेमंद सोर्स से निजी परेशानियों के लिए इमरजेंसी हॉटलाइन की सुविधा और कॉन्टेंट उपलब्ध कराते हैं. इसमें आत्महत्या, यौन शोषण, ज़हर खाने, लिंग के आधार पर होने वाली हिंसा या नशे की लत से जुड़ी कोई खास क्वेरी जैसे विषय शामिल होते हैं. निजी परेशानियों से जुड़ी जानकारीको Google Search पर दिखाने के बारे में ज़्यादा जानें.
- SOS Alerts: हमारा SOS Alerts सिस्टम, प्राकृतिक आपदाओं या गंभीर मुसीबत की स्थितियों के दौरान स्थानीय, राष्ट्रीय या अंतरराष्ट्रीय अथॉरिटी से मिले अपडेट दिखाता है. इन अपडेट में आपातकालीन फ़ोन नंबर, वेबसाइटें, मैप, मददगार वाक्यांशों के अनुवाद, दान देने के अवसर वगैरह शामिल हो सकते हैं. SOS Alerts के काम करने के तरीके के बारे में ज़्यादा जानें. साथ ही, यह जानें कि SOS Alerts कैसे Google के मुसीबत की चेतावनी वाले सिस्टम का हिस्सा है, जो बाढ़, जंगल में लगी आग, तूफ़ान, भूकंपों, और अन्य आपदाओं के समय मदद करता है.
डुप्लीकेट कॉपी हटाने वाले सिस्टम
जब Google पर खोज की जाती है, तो खोज नतीजों से मिलते-जुलते हज़ारों या लाखों वेब पेज मिलते हैं. इनमें से कुछ एक-दूसरे से काफ़ी मिलते-जुलते हो सकते हैं. ऐसे मामलों में, डुप्लीकेट कॉन्टेंट से बचने के लिए हमारे सिस्टम सिर्फ़ काम के नतीजे दिखाते हैं. डुप्लीकेट कॉपी हटाने वाले सिस्टम कैसे काम करते हैं और डुप्लीकेट होने पर हटाए गए नतीजों को देखने के तरीके के बारे में ज़्यादा जानें.
डुप्लीकेट कॉपी हटाने वाले सिस्टम फ़ीचर्ड स्निपेट पर भी काम करते हैं. अगर किसी वेब पेज लिस्टिंग को फ़ीचर्ड स्निपेट के तौर पर दिखाया जाता है, तो हम उस लिस्टिंग को नतीजों के पहले पेज पर बार-बार नहीं दिखाते. इससे नतीजों को व्यवस्थित करने में मदद मिलती है और लोग आसानी से काम की जानकारी ढूंढ पाते हैं.
एग्ज़ैक्ट मैच दिखाने वाला डोमेन सिस्टम
कॉन्टेंट, किसी खोज के हिसाब से सही है या नहीं यह तय करने के लिए हमारे रैंकिंग सिस्टम, डोमेन नेम में इस्तेमाल हुए शब्दों को भी एक अहम फ़ैक्टर मानते हैं. हालांकि, एग्ज़ैक्ट मैच दिखाने वाला डोमेन सिस्टम यह पक्का करता है कि हम उन डोमेन पर होस्ट किए गए कॉन्टेंट को ज़्यादा क्रेडिट न दें जो खास तौर पर क्वेरी से मेल खाते हों. उदाहरण के लिए, ऐसा हो सकता है कि कोई व्यक्ति अपने कॉन्टेंट की रैंकिंग को बढ़ाने के लिए, अपने डोमेन नेम में "लंच-करने-के-लिए-सबसे-बढ़िया-जगह" जैसे शब्दों का इस्तेमाल करे. ऐसा करने के पीछे उसका मकसद, अपने वेब पेज को खोज के नतीजों में सबसे ऊपर दिखाना हो सकता है. ऐसी स्थिति में हमारा सिस्टम, ज़रूरत के मुताबिक बदलाव करता है.
अप-टू-डेट कॉन्टेंट दिखाने वाले सिस्टम
हमारे पास "क्वेरी के हिसाब से अप-टू-डेट कॉन्टेंट" दिखाने के लिए बहुत से सिस्टम मौजूद हैं. इन्हें ज़रूरत के हिसाब से सही जगह पर क्वेरी के अप-टू-डेट नतीजे दिखाने के लिए डिज़ाइन किया गया है. उदाहरण के लिए, अगर किसी व्यक्ति को हाल ही में रिलीज़ हुई फ़िल्म के बारे में देखना है, तो वह फ़िल्म बनने के दौरान पब्लिश हुए पुराने लेखों को पढ़ने के बजाय, हाल ही की समीक्षाएं पढ़ना ज़्यादा पसंद करेगा. एक अन्य उदाहरण यह है कि आम तौर पर "भूकंप" के बारे में खोजने पर, आपको उससे बचने के तरीकों और संसाधनों से जुड़ी जानकारी भी दिख सकती है. हालांकि, अगर हाल ही में कोई भूकंप आया है, तो हो सकता है कि आपको समाचार के लेख और नया कॉन्टेंट दिखे.
लिंक के आधार पर किए जाने वाले विश्लेषण सिस्टम और PageRank
हम कई सिस्टम का इस्तेमाल करते हैं, जो यह समझने में मदद करते हैं कि पेज एक-दूसरे से कैसे लिंक हैं. साथ ही, ये तय करते हैं कि कौनसे पेज किस बारे में हैं और क्वेरी के जवाब के तौर पर कौनसे पेज मददगार हैं. Google के लॉन्च होने के बाद से PageRank, हमारे मुख्य रैंकिंग सिस्टम में से एक है. अगर आपको इसके बारे में ज़्यादा जानना है, तो ओरिजनल PageRank के रिसर्च पेपर और पेटेंट पढ़े जा सकते हैं. PageRank के काम करने का तरीका तब से काफ़ी बेहतर हो चुका है और यह हमारे मुख्य रैंकिंग सिस्टम का हिस्सा बना हुआ है.
स्थानीय खबरें दिखाने वाले सिस्टम
हमारे पास ऐसे सिस्टम हैं जो ज़रूरी जगहों पर स्थानीय खबरों के सोर्स को पहचानने और उन्हें दिखाने के लिए काम करते हैं. जैसे, "टॉप स्टोरीज़" "स्थानीय खबरों" की सुविधाएं.
MUM
मल्टीटास्क यूनिफ़ाइड मॉडल (MUM), एक ऐसा एआई (AI) सिस्टम है जो भाषा को समझने के साथ-साथ जनरेट भी कर सकता है. फ़िलहाल, इसका इस्तेमाल Search में सामान्य रैंकिंग के लिए नहीं किया जाता है, बल्कि कुछ खास मामलों में किया जाता है. जैसे, COVID-19 टीकाकरण की जानकारी को बेहतर बनाना और दिखाए जाने वाले फ़ीचर्ड स्निपेट कॉलआउट को बेहतर बनाना.
न्यूरल मैचिंग
न्यूरल मैचिंग एक एआई (AI) सिस्टम है, जिसका इस्तेमाल Google, क्वेरी और पेजों के कॉन्सेप्ट को समझने और उन्हें एक-दूसरे से मैच करने के लिए करता है.
ओरिजनल कॉन्टेंट दिखाने वाले सिस्टम
हमारे पास ऐसे सिस्टम मौजूद हैं जो खोज के नतीजों में, ओरिजनल रिपोर्टिंग सहित ओरिजनल कॉन्टेंट को प्रमुखता से दिखाते हैं, न कि ऐसे कॉन्टेंट को जिसमें किसी बात का सिर्फ़ हवाला दिया गया हो. इस काम में कैननिकल मार्कअप काफ़ी मददगार है. इसका इस्तेमाल करके क्रिएटर्स हमें यह बता सकते हैं कि अगर किसी पेज के कई डुप्लीकेट वर्शन मौजूद हैं, तो उनमें से मुख्य या ओरिजनल पेज कौनसा है.
रैंकिंग कम करके कॉन्टेंट हटाने वाले सिस्टम
Google की कुछ ऐसी नीतियां हैं जिसके तहत वह कुछ खास तरह के कॉन्टेंट को हटा देता है. अगर हमें किसी खास साइट से, कॉन्टेंट हटाने के कई अनुरोध मिलते हैं, तो हम उनका इस्तेमाल हमारे खोज के नतीजों को बेहतर बनाने से जुड़े सिग्नल के तौर पर करते हैं. खास तौर पर:
- किसी कानूनी वजह से हटाया जाना: 如果收到大量涉及特定网站的有效版权内容移除要求,我们会据此降低该网站中其他内容在搜索结果中的排名。这样,如果存在其他侵权内容,用户更可能看到原创内容,而非相应侵权内容。对于涉及诽谤、仿冒商品和法院命令移除的投诉,我们会采用类似的降位衡量因素。对于儿童性虐待内容 (CSAM),我们一经发现即会将其移除,并会降低儿童性虐待内容 (CSAM) 占比非常高的网站中所有内容的排名。
- निजी जानकारी हटाना: अगर हमें किसी ऐसी साइट से निजी जानकारी हटाने के कई अनुरोध मिलते हैं जिस पर कॉन्टेंट हटाने के लिए पैसे मांगे जाते हैं, तो हम अपने खोज नतीजों में उस साइट के अन्य कॉन्टेंट की रैंकिंग भी कम कर देते हैं. हम इस बात की भी जांच करते हैं कि क्या दूसरी साइटों पर भी इसी तरह के तरीके इस्तेमाल किए जा रहे हैं. अगर ऐसा होता है, तो हम उन साइटों के कॉन्टेंट की रैंकिंग भी कम कर देते हैं. हम उन साइटों के कॉन्टेंट की रैंकिंग भी कम कर सकते हैं जिनके लिए, इस तरह के कॉन्टेंट को हटाने के कई अनुरोध मिलते हैं: डॉक्सिंग वाला कॉन्टेंट, निजी अश्लील तस्वीरें और बिना सहमति के पोस्ट किया गया अश्लील कॉन्टेंट या सहमति के बिना पोस्ट किया गया नकली कॉन्टेंट.
पैसेज रैंकिंग सिस्टम
पैसेज रैंकिंग, एक एआई (AI) सिस्टम है, जिसका इस्तेमाल हम किसी वेब पेज के अलग-अलग सेक्शन या "पैसेज" की पहचान करने के लिए करते हैं. साथ ही, इससे यह बेहतर तरीके से समझा जा सकता है कि कोई पेज खोज के हिसाब से कितना सही है.
RankBrain
RankBrain एक एआई (AI) सिस्टम है. इससे हमें यह समझने में मदद मिलती है कि शब्द कॉन्सेप्ट से किस तरह जुड़े हैं. इससे हम काम के कॉन्टेंट को भी बेहतर तरीके से दिखा सकते हैं. भले ही, उसमें खोज के लिए इस्तेमाल किए गए सभी शब्द शामिल न हों. ऐसा इस आधार पर किया जाता है कि कोई कॉन्टेंट, दूसरे शब्दों और कॉन्सेप्ट से किस तरह जुड़ा हुआ है.
भरोसेमंद जानकारी देने वाले सिस्टम
सबसे भरोसेमंद जानकारी दिखाने के लिए, अलग-अलग सिस्टम कई तरीकों से काम करते हैं. जैसे, ज़्यादा भरोसेमंद पेजों को दिखाने में मदद करना, खोज के नतीजों में खराब क्वालिटी वाले कॉन्टेंट की रैंकिंग कम करना, और बेहतर क्वालिटी की पत्रकारिता को बढ़ावा देना. जब भरोसेमंद जानकारी उपलब्ध नहीं होती है, तो हमारे सिस्टम तेज़ी से बदलते विषयों के लिए अपने-आप कॉन्टेंट से जुड़ी सलाह दिखाते हैं. ऐसा तब होता है, जब उन्हें खोज के नतीजों की क्वालिटी पर पूरा भरोसा नहीं होता है. इनमें उन तरीकों के बारे में सलाह दी गई है जिनका इस्तेमाल करके, ज़्यादा मददगार नतीजे पाए जा सकते हैं. Search में अच्छी क्वालिटी की जानकारी देने के हमारे तरीके के बारे में ज़्यादा जानें.
समीक्षाएं करने वाला सिस्टम
समीक्षाएं करने वाले सिस्टम का मकसद, अच्छी क्वालिटी की समीक्षाओं, अहम जानकारी देने वाले विश्लेषण, और ओरिजनल रिसर्च को बढ़ावा देना है. इन समीक्षाओं को, विशेषज्ञों या विषय को अच्छी तरह समझने वाले लोगों ने लिखा होता है.
साइट डाइवर्सिटी सिस्टम
हमारे साइट डाइवर्सिटी सिस्टम की मदद से, हम आम तौर पर अपने सबसे अच्छे नतीजों में, एक ही साइट की दो से ज़्यादा वेब पेज लिस्टिंग नहीं दिखाते हैं. इसकी वजह से, एक ही साइट के वेब पेज सबसे ऊपर दिखने वाले खोज के नतीजों में नहीं दिखेंगे. हालांकि, हम अब भी उन मामलों में दो से ज़्यादा लिस्टिंग दिखा सकते हैं जिनमें हमारे सिस्टम यह तय करते हैं कि किसी खोज के लिए ऐसा करना ज़रूरी है. आम तौर पर, यह सिस्टम सबडोमेन को रूट डोमेन का हिस्सा मानता है. उदाहरण के लिए, सबडोमेन (subdomain.example.com) और रूट डोमेन (example.com) दोनों से जुड़ी लिस्टिंग को एक ही साइट का हिस्सा माना जाएगा. कई बार, सबडोमेन को अलग-अलग साइटों के तौर पर माना जाता है. हालांकि, ऐसा सिर्फ़ ज़रूरत पड़ने पर ही किया जाता है.
स्पैम का पता लगाने वाले सिस्टम
ऐसा कोई भी नहीं चाहता कि उसके ईमेल के इनबॉक्स में स्पैम आए. इसलिए, स्पैम फ़िल्टर काफ़ी मददगार होते हैं. Search भी इसी तरह की चुनौती का सामना करता है. ऐसा इसलिए है, क्योंकि इंटरनेट पर बड़ी संख्या में स्पैम मौजूद हैं. अगर इसे नहीं रोका गया, तो हम सही और मददगार नतीजे नहीं दिखा पाएंगे. हम स्पैम का पता लगाने वाले सिस्टम का इस्तेमाल करते हैं. इसमें SpamBrain शामिल है. ऐसा उन कॉन्टेंट और गतिविधियों को रोकने के लिए किया जाता है जो स्पैम से जुड़ी नीतियों का उल्लंघन करते हैं. ये सिस्टम, उन नए तरीकों की जानकारी पाने के लिए लगातार अपडेट किए जाते हैं जिनसे स्पैम के खतरों में बढ़ोतरी हो रही है.
रिटायर्ड सिस्टम
यहां इन सिस्टम के बारे में इसलिए बताया गया है, ताकि इनकी जानकारी रखी जा सके. इन्हें या तो नए सिस्टम में शामिल कर दिया गया है या हमारे मुख्य रैंकिंग सिस्टम का हिस्सा बना दिया गया है.
मददगार कॉन्टेंट दिखाने वाला सिस्टम
इस सिस्टम का एलान, साल 2022 में "मददगार कॉन्टेंट से जुड़ा अपडेट" के तौर पर हुआ. इस सिस्टम को यह पक्का करने के लिए डिज़ाइन किया गया था कि सर्च इंजन में ट्रैफ़िक हासिल करने के मकसद से बनाए गए कॉन्टेंट के बजाय, ऐसे खोज के नतीजे दिखें जिनसे लोगों को ओरिजनल और दूसरों का लिखा हुआ मददगार कॉन्टेंट मिले. मार्च 2024 में, इसमें सुधार हुआ और यह हमारे मुख्य रैंकिंग सिस्टम का हिस्सा बन गया. ऐसा इसलिए हुआ, क्योंकि हमारे सिस्टम अलग-अलग तरह के सिग्नल और सिस्टम का इस्तेमाल करते हैं, ताकि लोगों को मददगार नतीजे दिख पाएं.
हमिंगबर्ड
अगस्त 2013 में बनाए गए हमारे रैंकिंग सिस्टम में यह एक बहुत बड़ा सुधार है. इसके बाद से हमारे रैंकिंग सिस्टम लगातार बेहतर हो रहे हैं. पहले भी इनमें बदलाव होते रहे हैं.
Panda सिस्टम
इस सिस्टम को यह पक्का करने के लिए डिज़ाइन किया गया है कि हमारे खोज के नतीजों में अच्छी क्वालिटी के साथ-साथ ओरिजनल कॉन्टेंट दिखे. इसका एलान 2011 में किया गया और इसे "Panda" नाम दिया गया. साथ ही, यह 2015 में हमारे मुख्य रैंकिंग सिस्टम का हिस्सा बन गया.
पेंगुइन सिस्टम
यह सिस्टम, स्पैम वाली लिंक को रोकने के लिए डिज़ाइन किया गया है. इसका एलान 2012 में किया गया और इसे "पेंगुइन अपडेट" नाम दिया गया. साथ ही, 2016 में इसे हमारे मुख्य रैंकिंग सिस्टम में इंटिग्रेट किया गया.