Puedes encontrar una versión más reciente de este conjunto de datos con 4 clases para el período 2017-2020 en JAXA/ALOS/PALSAR/YEARLY/FNF4.
El mapa global de bosque/no bosque (FNF) se genera clasificando la imagen SAR (coeficiente de retrodispersión) en el mosaico SAR global de PALSAR-2/PALSAR con una resolución de 25 m, de modo que los píxeles de retrodispersión alta y baja se asignen como "bosque" y "no bosque", respectivamente. Aquí, "bosque" se define como el bosque natural con una superficie superior a 0.5 ha y una cubierta forestal superior al 10%. Esta definición es la misma que la de la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). Dado que la retrodispersión del radar del bosque depende de la región (zona climática), la clasificación de bosque/no bosque se realiza con un umbral de retrodispersión que depende de la región. La precisión de la clasificación se verifica con fotos in situ y con imágenes satelitales ópticas de alta resolución. En la Descripción del conjunto de datos del proveedor, encontrarás información detallada.
Atención:
Los valores de dispersión pueden variar significativamente de una ruta a otra en las áreas forestales de latitudes altas. Esto se debe al cambio en la intensidad de la retrodispersión causada por los árboles congelados en invierno.
Ten en cuenta que esto puede afectar la clasificación de bosque/no bosque.
Bandas
Tamaño de píxel 25 metros
Bandas
Nombre
Mín.
Máx.
Tamaño de los píxeles
Descripción
fnf
1
3
metros
Clasificación de la cobertura terrestre en forestal y no forestal
Tabla de clases de FNF
Valor
Color
Descripción
1
#006400
Bosque
2
#feff99
No bosque
3
#0000ff
Agua
Condiciones de Uso
Condiciones de Uso
JAXA conserva la propiedad del conjunto de datos y no puede garantizar ningún problema causado o posiblemente causado por el uso de los conjuntos de datos.
Cualquier persona que desee publicar resultados con los conjuntos de datos debe reconocer claramente la propiedad de los datos en la publicación.
Citas
Citas:
Masanobu Shimada, Takuya Itoh, Takeshi Motooka, Manabu Watanabe, Shiraishi Tomohiro, Rajesh Thapa y Richard Lucas, "New Global Forest/Non-forest Maps from ALOS PALSAR Data (2007-2010)", Remote Sensing of Environment, 155, págs. 13-31, diciembre de 2014. doi:10.1016/j.rse.2014.04.014.
En JAXA/ALOS/PALSAR/YEARLY/FNF4, se puede encontrar una versión más reciente de este conjunto de datos con 4 clases para el período 2017-2020. El mapa global de bosque/no bosque (FNF) se genera clasificando la imagen de SAR (coeficiente de retrodispersión) en el mosaico global de SAR de PALSAR-2/PALSAR con una resolución de 25 m, de modo que los píxeles de retrodispersión alta y baja se asignan como "bosque" y …
[null,null,[],[[["\u003cp\u003eThe JAXA/ALOS/PALSAR/YEARLY/FNF dataset provides a global forest/non-forest map at 25-meter resolution, classifying areas as forest, non-forest, or water based on SAR backscatter data.\u003c/p\u003e\n"],["\u003cp\u003eThis dataset covers the period from 2007 to 2018 and utilizes a region-dependent threshold for classification to account for variations in radar backscatter across different climate zones.\u003c/p\u003e\n"],["\u003cp\u003eUsers should be aware that backscatter values might differ significantly in high-latitude forest areas due to seasonal changes, potentially affecting the classification accuracy.\u003c/p\u003e\n"],["\u003cp\u003eA newer version of the dataset, JAXA/ALOS/PALSAR/YEARLY/FNF4, offers an updated classification with four classes for the years 2017-2020.\u003c/p\u003e\n"],["\u003cp\u003eJAXA retains ownership of the dataset, and users are required to acknowledge the data source when publishing any results derived from it.\u003c/p\u003e\n"]]],["The JAXA EORC provides a global forest/non-forest (FNF) map dataset from 2007 to 2018. This dataset uses 25m resolution PALSAR-2/PALSAR SAR mosaic images, classifying pixels based on backscatter strength into \"forest,\" \"non-forest,\" and \"water.\" Forest is defined as natural forest with an area over 0.5 ha and cover exceeding 10%. The dataset is accessible via Google Earth Engine using the provided snippet and is classified with an accuracy determined through in-situ and high-resolution optical images.\n"],null,["# Global 3-class PALSAR-2/PALSAR Forest/Non-Forest Map\n\nDataset Availability\n: 2007-01-01T00:00:00Z--2018-01-01T00:00:00Z\n\nDataset Provider\n:\n\n\n [JAXA EORC](https://www.eorc.jaxa.jp/ALOS/en/dataset/fnf_e.htm)\n\nTags\n:\n[alos](/earth-engine/datasets/tags/alos) [alos2](/earth-engine/datasets/tags/alos2) [classification](/earth-engine/datasets/tags/classification) [eroc](/earth-engine/datasets/tags/eroc) [forest](/earth-engine/datasets/tags/forest) [forest-biomass](/earth-engine/datasets/tags/forest-biomass) [jaxa](/earth-engine/datasets/tags/jaxa) [landcover](/earth-engine/datasets/tags/landcover) [palsar](/earth-engine/datasets/tags/palsar) [palsar2](/earth-engine/datasets/tags/palsar2) [sar](/earth-engine/datasets/tags/sar) \n\n#### Description\n\nA newer version of this dataset with 4 classes for 2017-2020 can be found in\n[JAXA/ALOS/PALSAR/YEARLY/FNF4](/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_FNF4)\n\nThe global forest/non-forest map (FNF) is generated by\nclassifying the SAR image (backscattering coefficient) in the\nglobal 25m resolution PALSAR-2/PALSAR SAR mosaic so that strong and\nlow backscatter pixels are assigned as \"forest\" and \"non-forest\",\nrespectively. Here, \"forest\" is defined as the natural forest\nwith the area larger than 0.5 ha and forest cover over 10%. This\ndefinition is the same as the Food and Agriculture Organization\n(FAO) definition. Since the radar backscatter from the forest\ndepends on the region (climate zone), the classification of\nForest/Non-Forest is conducted by using a region-dependent\nthreshold of backscatter. The classification accuracy is\nchecked by using in-situ photos and high-resolution optical\nsatellite images. Detailed information is available in the provider's\n[Dataset Description](https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/DatasetDescription_PALSAR2_Mosaic_FNF_revE.pdf).\n\nAttention:\n\n- Backscatter values may vary significantly from path to path over high latitude forest areas. This is due to the change of backscattering intensity caused by freezing trees in winter. Please note that this may affect the classification of forest/non-forest.\n\n### Bands\n\n\n**Pixel Size**\n\n25 meters\n\n**Bands**\n\n| Name | Min | Max | Pixel Size | Description |\n|-------|-----|-----|------------|--------------------------------------------|\n| `fnf` | 1 | 3 | meters | Forest/Non-Forest landcover classification |\n\n**fnf Class Table**\n\n| Value | Color | Description |\n|-------|---------|-------------|\n| 1 | #006400 | Forest |\n| 2 | #feff99 | Non-Forest |\n| 3 | #0000ff | Water |\n\n### Terms of Use\n\n**Terms of Use**\n\nJAXA retains ownership of the dataset and cannot guarantee\nany problem caused by or possibly caused by using the datasets.\nAnyone wishing to publish any results using the datasets should\nclearly acknowledge the ownership of the data in the publication.\n\n### Citations\n\nCitations:\n\n- Masanobu Shimada, Takuya Itoh, Takeshi Motooka, Manabu Watanabe,\n Shiraishi Tomohiro, Rajesh Thapa, and Richard Lucas, \"New Global\n Forest/Non-forest Maps from ALOS PALSAR Data (2007-2010)\", Remote Sensing\n of Environment, 155, pp. 13-31, December 2014.\n [doi:10.1016/j.rse.2014.04.014.](https://doi.org/10.1016/j.rse.2014.04.014)\n\n### Explore with Earth Engine\n\n| **Important:** Earth Engine is a platform for petabyte-scale scientific analysis and visualization of geospatial datasets, both for public benefit and for business and government users. Earth Engine is free to use for research, education, and nonprofit use. To get started, please [register for Earth Engine access.](https://console.cloud.google.com/earth-engine)\n\n### Code Editor (JavaScript)\n\n```javascript\nvar dataset = ee.ImageCollection('JAXA/ALOS/PALSAR/YEARLY/FNF')\n .filterDate('2017-01-01', '2017-12-31');\nvar forestNonForest = dataset.select('fnf');\nvar forestNonForestVis = {\n min: 1,\n max: 3,\n palette: ['006400', 'feff99', '0000ff'],\n};\nMap.setCenter(136.85, 37.37, 4);\nMap.addLayer(forestNonForest, forestNonForestVis, 'Forest/Non-Forest');\n```\n[Open in Code Editor](https://code.earthengine.google.com/?scriptPath=Examples:Datasets/JAXA/JAXA_ALOS_PALSAR_YEARLY_FNF) \n[Global 3-class PALSAR-2/PALSAR Forest/Non-Forest Map](/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_FNF) \nA newer version of this dataset with 4 classes for 2017-2020 can be found in JAXA/ALOS/PALSAR/YEARLY/FNF4 The global forest/non-forest map (FNF) is generated by classifying the SAR image (backscattering coefficient) in the global 25m resolution PALSAR-2/PALSAR SAR mosaic so that strong and low backscatter pixels are assigned as \"forest\" and ... \nJAXA/ALOS/PALSAR/YEARLY/FNF, alos,alos2,classification,eroc,forest,forest-biomass,jaxa,landcover,palsar,palsar2,sar \n2007-01-01T00:00:00Z/2018-01-01T00:00:00Z \n-90 -180 90 180 \nGoogle Earth Engine \nhttps://developers.google.com/earth-engine/datasets\n\n- [](https://doi.org/https://www.eorc.jaxa.jp/ALOS/en/dataset/fnf_e.htm)\n- [](https://doi.org/https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_FNF)"]]