O conjunto de dados anual global de luzes noturnas do VIIRS é uma série temporal produzida com base em grades mensais de radiância média sem nuvens para 2022. Os dados de anos anteriores estão disponíveis no conjunto NOAA/VIIRS/DNB/ANNUAL_V21.
Uma etapa inicial de filtragem removeu pixels iluminados pelo sol, pela lua e nublados, resultando em composições aproximadas que contêm luzes, incêndios, aurora e plano de fundo. Os composites anuais aproximados são feitos em incrementos mensais e combinados para formar composites anuais aproximados.
As etapas subsequentes usam a mediana de 12 meses de radiância para descartar outliers de radiância alta e baixa, filtrando a maioria dos incêndios e isolando o plano de fundo. As áreas de segundo plano são zeradas usando o intervalo de dados (DR) calculado com base em células de grade 3x3. O limite de DR para segundo plano é indexado aos níveis de cobertura de nuvens, com limites de DR mais altos em áreas com poucos números de coberturas sem nuvens.
Bandas
Tamanho do pixel 463,83 metros
Bandas
Nome
Unidades
Tamanho do pixel
Descrição
average
nanoWatts/sr/cm^2
metros
Valores médios de radiância DNB.
average_masked
nanoWatts/sr/cm^2
metros
Valores médios de radiância DNB mascarada
cf_cvg
metros
Coberturas sem nuvens e o número total de observações que foram incluídas em cada pixel. Essa faixa pode ser usada para identificar áreas com poucos números de observações em que a qualidade é reduzida.
cvg
metros
Número total de observações sem luz solar e luz da lua.
maximum
nanoWatts/sr/cm^2
metros
Valores máximos de radiância DNB.
median
nanoWatts/sr/cm^2
metros
Valores medianos de radiância DNB
median_masked
nanoWatts/sr/cm^2
metros
Valores de radiância DNB mascarados da mediana.
minimum
nanoWatts/sr/cm^2
metros
Valores mínimos de radiância DNB
Termos de Uso
Termos de Uso
Os dados, as informações e os produtos da Colorado School of Mines, independente do método de entrega, não estão sujeitos a direitos autorais e não têm restrições quanto ao uso posterior pelo público. Depois de obtidos, eles podem ser usados para qualquer finalidade legal. Os dados acima estão em domínio público e são fornecidos sem restrição de uso e distribuição.
Citações
Citações:
Elvidge, C.D, Zhizhin, M., Ghosh T., Hsu FC, Taneja J. Série temporal anual de luzes noturnas globais do VIIRS derivadas de médias mensais:2012 a 2019.
Remote Sensing 2021, 13(5), p.922, doi:10.3390/rs13050922
doi:10.3390/rs13050922
O conjunto de dados anual globais de luzes noturnas do VIIRS é uma série temporal produzida com base em grades mensais de radiância média sem nuvens para 2022. Os dados de anos anteriores estão disponíveis no conjunto de dados NOAA/VIIRS/DNB/ANNUAL_V21. Uma etapa inicial de filtragem removeu pixels iluminados pelo sol, pela lua e nublados, resultando em composições aproximadas que contêm luzes, incêndios, aurora e plano de fundo. …
[null,null,[],[[["\u003cp\u003eThe NOAA/VIIRS/DNB/ANNUAL_V22 dataset provides annual global VIIRS nighttime lights data from monthly cloud-free average radiance grids for 2022.\u003c/p\u003e\n"],["\u003cp\u003eThe dataset includes bands representing average, masked, cloud-free coverages, total observations, maximum, median, and minimum DNB radiance values.\u003c/p\u003e\n"],["\u003cp\u003eData is freely available for public use with no restrictions, provided by the Colorado School of Mines.\u003c/p\u003e\n"],["\u003cp\u003ePrevious years' data (before 2022) can be accessed through the NOAA/VIIRS/DNB/ANNUAL_V21 dataset.\u003c/p\u003e\n"],["\u003cp\u003eThe dataset utilizes filtering to remove sunlit, moonlit, and cloudy pixels, minimizing the influence of fires and aurorae on light measurements.\u003c/p\u003e\n"]]],["The annual VIIRS nighttime lights dataset, provided by the Colorado School of Mines, spans from April 1, 2012, to January 1, 2023. The dataset is derived from monthly, cloud-free radiance grids. Data processing involves filtering out sunlit, moonlit, and cloudy pixels, followed by median radiance analysis to eliminate outliers like fires. Background areas are then zeroed out. The dataset includes bands like 'average,' 'maximum,' 'minimum,' and 'median' radiance, along with cloud-free coverage data, it's available in the Earth Engine platform.\n"],null,["# VIIRS Nighttime Day/Night Annual Band Composites V2.2\n\nDataset Availability\n: 2012-04-01T00:00:00Z--2024-01-01T00:00:00Z\n\nDataset Provider\n:\n\n\n [Earth Observation Group, Payne Institute for Public Policy, Colorado School of Mines](https://eogdata.mines.edu/products/vnl/#annual_v2)\n\nCadence\n: 1 Year\n\nTags\n:\n[annual](/earth-engine/datasets/tags/annual) [dnb](/earth-engine/datasets/tags/dnb) [eog](/earth-engine/datasets/tags/eog) [lights](/earth-engine/datasets/tags/lights) [nighttime](/earth-engine/datasets/tags/nighttime) [noaa](/earth-engine/datasets/tags/noaa) [population](/earth-engine/datasets/tags/population) [viirs](/earth-engine/datasets/tags/viirs) [visible](/earth-engine/datasets/tags/visible) \n\n#### Description\n\nAnnual global VIIRS nighttime lights dataset is a time series produced from\nmonthly cloud-free average radiance grids for 2022. Data for earlier\nyears are available in the\n[NOAA/VIIRS/DNB/ANNUAL_V21](/earth-engine/datasets/catalog/NOAA_VIIRS_DNB_ANNUAL_V21) dataset.\n\nAn initial filtering step removed sunlit, moonlit and cloudy pixels,\nleading to rough composites that contains lights, fires, aurora and\nbackground. The rough annual composites are made on monthly increments and\nthen combined to form rough annual composites.\n\nThe subsequent steps uses the twelve-month median radiance to discard high\nand low radiance outliers, filtering out most fires and isolating the\nbackground. Background areas are zeroed out using the data range (DR)\ncalculated from 3x3 grid cells. The DR threshold for background is indexed\nto cloud-cover levels, with higher DR thresholds in areas having low numbers\nof cloud-free coverages.\n\n### Bands\n\n\n**Pixel Size**\n\n463.83 meters\n\n**Bands**\n\n| Name | Units | Pixel Size | Description |\n|------------------|--------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `average` | nanoWatts/sr/cm\\^2 | meters | Average DNB radiance values. |\n| `average_masked` | nanoWatts/sr/cm\\^2 | meters | Average Masked DNB radiance values |\n| `cf_cvg` | | meters | Cloud-free coverages; the total number of observations that went into each pixel. This band can be used to identify areas with low numbers of observations where the quality is reduced. |\n| `cvg` | | meters | Total number of observations free of sunlight and moonlight. |\n| `maximum` | nanoWatts/sr/cm\\^2 | meters | Maximum DNB radiance values. |\n| `median` | nanoWatts/sr/cm\\^2 | meters | Median DNB radiance values |\n| `median_masked` | nanoWatts/sr/cm\\^2 | meters | Median masked DNB radiance values. |\n| `minimum` | nanoWatts/sr/cm\\^2 | meters | Minimum DNB radiance values |\n\n### Terms of Use\n\n**Terms of Use**\n\nColorado School of Mines data, information, and products,\nregardless of the method of delivery,\nare not subject to copyright and carry no restrictions on their subsequent\nuse by the public. Once obtained, they may be put to any lawful use. The\nforgoing data is in the public domain and is being provided without\nrestriction on use and distribution.\n\n### Citations\n\nCitations:\n\n- Elvidge, C.D, Zhizhin, M., Ghosh T., Hsu FC, Taneja J. Annual time series of\n global VIIRS nighttime lights derived from monthly averages:2012 to 2019.\n Remote Sensing 2021, 13(5), p.922, doi:10.3390/rs13050922\n [doi:10.3390/rs13050922](https://doi.org/10.3390/rs13050922)\n\n### DOIs\n\n- \u003chttps://doi.org/10.3390/rs13050922\u003e\n\n### Explore with Earth Engine\n\n| **Important:** Earth Engine is a platform for petabyte-scale scientific analysis and visualization of geospatial datasets, both for public benefit and for business and government users. Earth Engine is free to use for research, education, and nonprofit use. To get started, please [register for Earth Engine access.](https://console.cloud.google.com/earth-engine)\n\n### Code Editor (JavaScript)\n\n```javascript\nvar dataset = ee.ImageCollection('NOAA/VIIRS/DNB/ANNUAL_V22')\n .filter(ee.Filter.date('2022-01-01', '2023-01-01'));\n\nvar nighttime = dataset.select('maximum');\nvar nighttimeVis = {min: 0.0, max: 60.0};\nMap.setCenter(-77.1056, 38.8904, 8);\nMap.addLayer(nighttime, nighttimeVis, 'Nighttime');\n```\n[Open in Code Editor](https://code.earthengine.google.com/?scriptPath=Examples:Datasets/NOAA/NOAA_VIIRS_DNB_ANNUAL_V22) \n[VIIRS Nighttime Day/Night Annual Band Composites V2.2](/earth-engine/datasets/catalog/NOAA_VIIRS_DNB_ANNUAL_V22) \nAnnual global VIIRS nighttime lights dataset is a time series produced from monthly cloud-free average radiance grids for 2022. Data for earlier years are available in the NOAA/VIIRS/DNB/ANNUAL_V21 dataset. An initial filtering step removed sunlit, moonlit and cloudy pixels, leading to rough composites that contains lights, fires, aurora and background. ... \nNOAA/VIIRS/DNB/ANNUAL_V22, annual,dnb,eog,lights,nighttime,noaa,population,viirs,visible \n2012-04-01T00:00:00Z/2024-01-01T00:00:00Z \n-65 -180 75 180 \nGoogle Earth Engine \nhttps://developers.google.com/earth-engine/datasets\n\n- [https://doi.org/10.3390/rs13050922](https://doi.org/https://eogdata.mines.edu/products/vnl/#annual_v2)\n- [https://doi.org/10.3390/rs13050922](https://doi.org/https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_DNB_ANNUAL_V22)"]]