این مجموعه داده به صورت الگوریتمی داده های مایکروویو را از چندین ماهواره، از جمله SSMI، SSMIS، MHS، AMSU-B و AMSR-E که هرکدام با ابزار ترکیبی TRMM کالیبره شده اند، ادغام می کند.
الگوریتم 3B43 یک بار در هر ماه تقویمی اجرا میشود تا با ترکیب برآوردهای 3 ساعته ادغام شده با کیفیت بالا/IR (3B42) با تجزیه و تحلیل مرکز انباشتگی ماهانه Global Precipitation (gccaugemaat Global Precipitation CP/GCC) واحد و بهترین تخمین نرخ بارش و میدان برآورد خطای بارش RMS (3B43) را تولید کند.
همه مجموعه دادههای بارش جهانی دارای برخی از منابع داده کالیبره هستند که برای کنترل تفاوتهای سوگیری بین ماهوارههای کمککننده ضروری است. دادههای چند ماهوارهای به مقیاس ماهانه میانگین میشوند و با تجزیه و تحلیل ماهانه بارش سطحی مرکز جهانی بارش (GPCC) ترکیب میشوند. در هر مورد، دادههای چند ماهوارهای با میانگین مساحت بزرگ تحلیل گیج، در صورت وجود (عمدتاً در خشکی)، تنظیم میشوند و سپس با استفاده از وزندهی واریانس خطای تصادفی تخمینی معکوس، با تحلیل گیج ترکیب میشوند. مناطقی که پوشش گیج ضعیفی دارند، مانند آفریقای مرکزی و اقیانوسها، وزن بیشتری در ورودی ماهواره دارند.
هافمن، GJ، 1997: برآورد خطای تصادفی ریشه میانگین مربع برای نمونه های محدود بارش تخمینی، J. Appl. Meteor., 1191-1201.
هافمن، GJ، 2012: سند مبنای نظری الگوریتم (ATBD) نسخه 3.0 برای اندازهگیری بارش جهانی ناسا (GPM) بازیابی یکپارچه چند ماهوارهای برای GPM (I-MERG). پروژه GPM، Greenbelt، MD، 29 pp.
هافمن، GJ، RF Adler، P. Arkin، A. Chang، R. Ferraro، A. Gruber، J. Janowiak، A. McNab، B. Rudolph و U. Schneider، 1997: مجموعه داده های ترکیبی بارش باران (GPCP) پروژه اقلیمی جهانی بارش، Bul. عامر شهاب. Soc., 78, 5-20.
هافمن، GJ، RF Adler، DT Bolvin، G. Gu، EJ Nelkin، KP Bowman، Y. Hong، EF Stocker، DB Wolff، 2007: تجزیه و تحلیل بارش چندماهواره TRMM: شبه جهانی، چند ساله، سنسور ترکیبی در بارش باران S. J. Hydrometeor., 8 (1)، 38-55.
هافمن، GJ، RF Adler، M. Morrissey، DT Bolvin، S. Curtis، R. Joyce، B McGavock، J. Susskind، 2001: بارش جهانی با وضوح یک درجه روزانه از مشاهدات چند ماهواره ای. J. Hydrometeor., 2 (1)، 36-50.
Huffman, GJ, RF Adler, B. Rudolph, U. Schneider, and P. Keehn, 1995: برآوردهای جهانی بارش بر اساس تکنیکی برای ترکیب تخمین های مبتنی بر ماهواره، تحلیل باران سنج و اطلاعات بارش مدل NWP، J. Clim.,125.8.
این مجموعه دیگر به روز نمی شود. به ماهانه IMERG مراجعه کنید این مجموعه داده به صورت الگوریتمی دادههای مایکروویو را از ماهوارههای متعدد، از جمله SSMI، SSMIS، MHS، AMSU-B و AMSR-E ادغام میکند، که هر کدام با ابزار ترکیبی TRMM کالیبره شدهاند. الگوریتم 3B43 یک بار در ماه تقویمی اجرا میشود تا بهترین نرخ بارش و RMS را تولید کند.
TRMM/3B43V7، آب و هوا، ژئوفیزیک، جاکسا، ناسا، بارش، بارندگی، trmm، آب و هوا
[null,null,[],[[["\u003cp\u003eThe TRMM 3B43V7 dataset provides monthly precipitation estimates from 1998 to 2019, derived from multiple satellite data sources.\u003c/p\u003e\n"],["\u003cp\u003eThis dataset is no longer updated and users are directed to the IMERG monthly dataset for more current precipitation data.\u003c/p\u003e\n"],["\u003cp\u003ePrecipitation estimates are generated by merging microwave and infrared data, calibrated using rain gauge analysis primarily over land.\u003c/p\u003e\n"],["\u003cp\u003eThe dataset is available at a spatial resolution of 27830 meters and includes bands for precipitation, relative error, and gauge weighting.\u003c/p\u003e\n"],["\u003cp\u003eTRMM 3B43V7 data is in the public domain and freely accessible for use and distribution.\u003c/p\u003e\n"]]],[],null,["# TRMM 3B43: Monthly Precipitation Estimates\n\nDataset Availability\n: 1998-01-01T00:00:00Z--2019-12-01T00:00:00Z\n\nDataset Provider\n:\n\n\n [NASA GES DISC at NASA Goddard Space Flight Center](https://doi.org/10.5067/TRMM/TMPA/MONTH/7)\n\nCadence\n: 1 Month\n\nTags\n:\n[climate](/earth-engine/datasets/tags/climate) [geophysical](/earth-engine/datasets/tags/geophysical) [jaxa](/earth-engine/datasets/tags/jaxa) [nasa](/earth-engine/datasets/tags/nasa) [precipitation](/earth-engine/datasets/tags/precipitation) [rainfall](/earth-engine/datasets/tags/rainfall) [trmm](/earth-engine/datasets/tags/trmm) [weather](/earth-engine/datasets/tags/weather) \n\n#### Description\n\n**This collection is no longer being updated. See\n[IMERG monthly](https://developers.google.com/earth-engine/datasets/catalog/NASA_GPM_L3_IMERG_MONTHLY_V06)**\n\nThis dataset algorithmically merges microwave data from multiple satellites,\nincluding SSMI, SSMIS, MHS, AMSU-B and AMSR-E, each inter-calibrated to the\nTRMM Combined Instrument.\n\nAlgorithm 3B43 is executed once per calendar month to produce the single,\nbest-estimate precipitation rate and RMS precipitation-error estimate field\n(3B43) by combining the 3-hourly merged high-quality/IR estimates (3B42)\nwith the monthly accumulated Global Precipitation Climatology Centre (GPCC)\nrain gauge analysis.\n\nAll of the global precipitation datasets have some calibrating data source,\nwhich is necessary to control bias differences between contributing\nsatellites. The multi-satellite data are averaged to the monthly scale and\ncombined with the Global Precipitation Climatology Centre's (GPCC) monthly\nsurface precipitation gauge analysis. In each case the multi-satellite data\nare adjusted to the large-area mean of the gauge analysis, where available\n(mostly over land), and then combined with the gauge analysis using a\nsimple inverse estimated-random-error variance weighting. Regions with poor\ngauge coverage, like central Africa and the oceans, have a higher weighting\non the satellite input.\n\nSee the [algorithm description](https://trmm.gsfc.nasa.gov/3b43.html)\nand the [file specification](https://pps.gsfc.nasa.gov/Documents/filespec.TRMM.V7.pdf)\nfor details.\n\n### Bands\n\n\n**Pixel Size**\n\n27830 meters\n\n**Bands**\n\n| Name | Units | Min | Max | Pixel Size | Description |\n|--------------------------|-------|---------|---------|------------|-----------------------------------------------------------|\n| `precipitation` | mm/hr | 0\\* | 6.73\\* | meters | Merged microwave/IR precipitation estimate |\n| `relativeError` | mm/hr | 0.001\\* | 16.36\\* | meters | Merged microwave/IR precipitation random error estimate |\n| `gaugeRelativeWeighting` | % | 0\\* | 100\\* | meters | Relative weighting of the rain gauges used in calibration |\n\n\\* estimated min or max value\n\n### Terms of Use\n\n**Terms of Use**\n\nThis dataset is in the public domain and is available\nwithout restriction on use and distribution. See [NASA's\nEarth Science Data \\& Information Policy](https://www.earthdata.nasa.gov/engage/open-data-services-and-software/data-and-information-policy)\nfor additional information.\n\n### Citations\n\nCitations:\n\n- Adler, R.F., G.J. Huffman, A. Chang, R. Ferraro, P. Xie, J. Janowiak,\n B. Rudolf, U. Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind,\n P. Arkin, E.J. Nelkin, 2003: The Version 2 Global Precipitation\n Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present).\n J. Hydrometeor., 4(6), 1147-1167.\n- Huffman, G.J., 1997: Estimates of Root-Mean-Square Random Error\n for Finite Samples of Estimated Precipitation, J. Appl. Meteor.,\n 1191-1201.\n- Huffman, G.J., 2012: Algorithm Theoretical Basis Document (ATBD)\n Version 3.0 for the NASA Global Precipitation Measurement (GPM)\n Integrated Multi-satellitE Retrievals for GPM (I-MERG). GPM Project,\n Greenbelt, MD, 29 pp.\n- Huffman, G.J., R.F. Adler, P. Arkin, A. Chang, R. Ferraro, A.\n Gruber, J. Janowiak, A. McNab, B. Rudolph, and U. Schneider, 1997:\n The Global Precipitation Climatology Project (GPCP) Combined Precipitation\n Dataset, Bul. Amer. Meteor. Soc., 78, 5-20.\n- Huffman, G.J., R.F. Adler, D.T. Bolvin, G. Gu, E.J. Nelkin, K.P.\n Bowman, Y. Hong, E.F. Stocker, D.B. Wolff, 2007: The TRMM Multi-satellite\n Precipitation Analysis: Quasi-Global, Multi-Year, Combined-Sensor\n Precipitation Estimates at Fine Scale. J. Hydrometeor., 8(1), 38-55.\n- Huffman, G.J., R.F. Adler, M. Morrissey, D.T. Bolvin, S. Curtis,\n R. Joyce, B McGavock, J. Susskind, 2001: Global Precipitation at\n One-Degree Daily Resolution from Multi-Satellite Observations. J.\n Hydrometeor., 2(1), 36-50.\n- Huffman, G.J., R.F. Adler, B. Rudolph, U. Schneider, and P. Keehn,\n 1995: Global Precipitation Estimates Based on a Technique for Combining\n Satellite-Based Estimates, Rain Gauge Analysis, and NWP Model Precipitation\n Information, J. Clim., 8, 1284-1295.\n\n### Explore with Earth Engine\n\n| **Important:** Earth Engine is a platform for petabyte-scale scientific analysis and visualization of geospatial datasets, both for public benefit and for business and government users. Earth Engine is free to use for research, education, and nonprofit use. To get started, please [register for Earth Engine access.](https://console.cloud.google.com/earth-engine)\n\n### Code Editor (JavaScript)\n\n```javascript\nvar dataset = ee.ImageCollection('TRMM/3B43V7')\n .filter(ee.Filter.date('2018-04-01', '2018-05-01'));\nvar precipitation = dataset.select('precipitation');\nvar precipitationVis = {\n min: 0.1,\n max: 1.2,\n palette: ['blue', 'purple', 'cyan', 'green', 'yellow', 'red'],\n};\nMap.setCenter(6.746, 46.529, 3);\nMap.addLayer(precipitation, precipitationVis, 'Precipitation');\n```\n[Open in Code Editor](https://code.earthengine.google.com/?scriptPath=Examples:Datasets/TRMM/TRMM_3B43V7) \n[TRMM 3B43: Monthly Precipitation Estimates](/earth-engine/datasets/catalog/TRMM_3B43V7) \nThis collection is no longer being updated. See IMERG monthly This dataset algorithmically merges microwave data from multiple satellites, including SSMI, SSMIS, MHS, AMSU-B and AMSR-E, each inter-calibrated to the TRMM Combined Instrument. Algorithm 3B43 is executed once per calendar month to produce the single, best-estimate precipitation rate and RMS ... \nTRMM/3B43V7, climate,geophysical,jaxa,nasa,precipitation,rainfall,trmm,weather \n1998-01-01T00:00:00Z/2019-12-01T00:00:00Z \n-50 -180 50 180 \nGoogle Earth Engine \nhttps://developers.google.com/earth-engine/datasets\n\n- [](https://doi.org/https://doi.org/10.5067/TRMM/TMPA/MONTH/7)\n- [](https://doi.org/https://developers.google.com/earth-engine/datasets/catalog/TRMM_3B43V7)"]]