-
Cocoa Probability model 2025a
注: このデータセットはまだ査読を受けていません。詳細については、GitHub の README をご覧ください。この画像コレクションは、基盤となる領域が商品で占有されている可能性をピクセル単位で推定します。確率の推定値は 10 メートル四方単位で提供され、… によって生成されています。 農業 生物多様性 保全 作物 eudr forestdatapartnership -
コーヒーの確率モデル 2025a
注: このデータセットはまだ査読を受けていません。詳細については、GitHub の README をご覧ください。この画像コレクションは、基盤となる領域が商品で占有されている可能性をピクセル単位で推定します。確率の推定値は 10 メートル四方単位で提供され、… によって生成されています。 農業 生物多様性 保全 作物 eudr forestdatapartnership -
パーム油プランテーションの世界地図
このデータセットは、2019 年の 10 m の世界的な工業用および小規模な油ヤシマップです。対象となるのは、油ヤシのプランテーションが検出された地域です。分類された画像は、Sentinel-1 と Sentinel-2 の半年間の合成画像に基づく畳み込みニューラル ネットワークの出力です。その他の情報については、記事をご覧ください。 農業 生物多様性 保全 作物 グローバル 土地利用 -
Palm Probability model 2025a
注: このデータセットはまだ査読を受けていません。詳細については、GitHub の README をご覧ください。この画像コレクションは、基盤となる領域が商品で占有されている可能性をピクセル単位で推定します。確率の推定値は 10 メートル四方単位で提供され、… によって生成されています。 農業 生物多様性 保全 作物 eudr forestdatapartnership -
ゴムノキの確率モデル 2025a
注: このデータセットはまだ査読を受けていません。詳細については、GitHub の README をご覧ください。この画像コレクションは、基盤となる領域が商品で占有されている可能性をピクセル単位で推定します。確率の推定値は 10 メートル四方単位で提供され、… によって生成されています。 農業 生物多様性 保全 作物 eudr forestdatapartnership
Datasets tagged plantation in Earth Engine
[null,null,[],[[["\u003cp\u003eThis page features datasets with global coverage and 10-meter resolution on oil palm plantations, cocoa, palm, and rubber tree probability.\u003c/p\u003e\n"],["\u003cp\u003eThe oil palm plantation dataset provides a 2019 map of industrial and smallholder plantations, based on Sentinel-1 and Sentinel-2 imagery analysis.\u003c/p\u003e\n"],["\u003cp\u003eThe cocoa, palm, and rubber tree probability models offer per-pixel likelihood of these crops' presence but are not yet peer-reviewed, with users directed to the associated GitHub README for details.\u003c/p\u003e\n"],["\u003cp\u003eAll datasets are relevant for biodiversity, conservation, and land use analysis.\u003c/p\u003e\n"]]],["The information describes four datasets related to agricultural land use. The first is a 2019 global map of oil palm plantations at 10m resolution, created using a neural network on satellite imagery. The other three are per-pixel probability models, also at 10m resolution, for cocoa, palm, and rubber trees respectively, all labeled as \"2024a\" and not peer-reviewed. These models estimate the probability of each area being occupied by these specific crops. All datasets are tagged with biodiversity, conservation, crop, and landuse.\n"],null,["# Datasets tagged plantation in Earth Engine\n\n-\n\n |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### Cocoa Probability model 2025a](/earth-engine/datasets/catalog/projects_forestdatapartnership_assets_cocoa_model_2025a) |\n | Note: This dataset is not yet peer-reviewed. Please see this GitHub README for more information. This image collection provides estimated per-pixel probability that the underlying area is occupied by the commodity. The probability estimates are provided at 10 meter resolution, and have been generated by ... |\n | [agriculture](/earth-engine/datasets/tags/agriculture) [biodiversity](/earth-engine/datasets/tags/biodiversity) [conservation](/earth-engine/datasets/tags/conservation) [crop](/earth-engine/datasets/tags/crop) [eudr](/earth-engine/datasets/tags/eudr) [forestdatapartnership](/earth-engine/datasets/tags/forestdatapartnership) |\n\n-\n\n |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### Coffee Probability model 2025a](/earth-engine/datasets/catalog/projects_forestdatapartnership_assets_coffee_model_2025a) |\n | Note: This dataset is not yet peer-reviewed. Please see this GitHub README for more information. This image collection provides estimated per-pixel probability that the underlying area is occupied by the commodity. The probability estimates are provided at 10 meter resolution, and have been generated by ... |\n | [agriculture](/earth-engine/datasets/tags/agriculture) [biodiversity](/earth-engine/datasets/tags/biodiversity) [conservation](/earth-engine/datasets/tags/conservation) [crop](/earth-engine/datasets/tags/crop) [eudr](/earth-engine/datasets/tags/eudr) [forestdatapartnership](/earth-engine/datasets/tags/forestdatapartnership) |\n\n-\n\n |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### Global Map of Oil Palm Plantations](/earth-engine/datasets/catalog/BIOPAMA_GlobalOilPalm_v1) |\n | The dataset is a 10m global industrial and smallholder oil palm map for 2019. It covers areas where oil palm plantations were detected. The classified images are the output of a convolutional neural network based on Sentinel-1 and Sentinel-2 half-year composites. See article for additional ... |\n | [agriculture](/earth-engine/datasets/tags/agriculture) [biodiversity](/earth-engine/datasets/tags/biodiversity) [conservation](/earth-engine/datasets/tags/conservation) [crop](/earth-engine/datasets/tags/crop) [global](/earth-engine/datasets/tags/global) [landuse](/earth-engine/datasets/tags/landuse) |\n\n-\n\n |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### Palm Probability model 2025a](/earth-engine/datasets/catalog/projects_forestdatapartnership_assets_palm_model_2025a) |\n | Note: This dataset is not yet peer-reviewed. Please see this GitHub README for more information. This image collection provides estimated per-pixel probability that the underlying area is occupied by the commodity. The probability estimates are provided at 10 meter resolution, and have been generated by ... |\n | [agriculture](/earth-engine/datasets/tags/agriculture) [biodiversity](/earth-engine/datasets/tags/biodiversity) [conservation](/earth-engine/datasets/tags/conservation) [crop](/earth-engine/datasets/tags/crop) [eudr](/earth-engine/datasets/tags/eudr) [forestdatapartnership](/earth-engine/datasets/tags/forestdatapartnership) |\n\n-\n\n |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### Rubber Tree Probability model 2025a](/earth-engine/datasets/catalog/projects_forestdatapartnership_assets_rubber_model_2025a) |\n | Note: This dataset is not yet peer-reviewed. Please see this GitHub README for more information. This image collection provides estimated per-pixel probability that the underlying area is occupied by the commodity. The probability estimates are provided at 10 meter resolution, and have been generated by ... |\n | [agriculture](/earth-engine/datasets/tags/agriculture) [biodiversity](/earth-engine/datasets/tags/biodiversity) [conservation](/earth-engine/datasets/tags/conservation) [crop](/earth-engine/datasets/tags/crop) [eudr](/earth-engine/datasets/tags/eudr) [forestdatapartnership](/earth-engine/datasets/tags/forestdatapartnership) |"]]