Ограничения по срокам получения и доставки

OptimizeToursRequest применяет ограничения к следующему:

  • Отгрузки, влияющие на то, как осуществляются перевозки
  • Транспортные средства, влияющие на расчет маршрутов транспортных средств
  • В глобальном масштабе это затрагивает как транспортные средства, так и поставки.

В этом руководстве основное внимание уделяется важнейшему ограничению доставки: временным окнам .

Временные окна — это тип ограничения, которое вы указываете в сообщении OptimizeToursRequest ( REST , gRPC ) для указания временных ограничений для операций по отправке. Этот тип ограничения влияет как на то, когда и как может быть выполнена отправка, так и на назначение транспортного средства для перевозки. При этих ограничениях оптимизатор отдает предпочтение тем транспортным средствам, которые могут наилучшим образом удовлетворить временные ограничения отгрузки.

Ограничения на отгрузку: временные окна

Вы указываете, когда может произойти получение или доставка, в сообщении Shipment.VisitRequest следующим образом:

  • Используйте свойство timeWindows в сообщении ( REST , gRPC ).
  • Укажите время начала и окончания в сообщении TimeWindow ( REST , gRPC ).

Пример запроса с ограничениями временного окна

В приведенном здесь примере показаны три разные поставки, каждая из которых имеет свое собственное окно доставки. Для простоты в этом примере временные окна устанавливаются только для deliveries , но временные окна также можно применять и к самовывозам. Можно указать несколько временных окон, хотя в этом примере используется только одно для каждой доставки VisitRequest .

См. пример запроса с временными окнами

{
  "populatePolylines": false,
  "populateTransitionPolylines": false,
  "model": {
    "globalStartTime": "2023-01-13T16:00:00Z",
    "globalEndTime": "2023-01-14T16:00:00Z",
    "shipments": [
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789456,
              "longitude": -122.390192
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T18:00:00Z",
                "endTime": "2023-01-13T19:00:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 100.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789116,
              "longitude": -122.395080
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T18:00:00Z",
                "endTime": "2023-01-13T18:30:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 20.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.795242,
              "longitude": -122.399347
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T17:30:00Z",
                "endTime": "2023-01-13T18:00:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 50.0
      }
    ],
    "vehicles": [
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 40.0,
        "costPerKilometer": 10.0
      }
    ]
  }
}
    

Пример ответа с ограничениями временного окна

В примере ответа время начала и окончания движения транспортного средства — 17:35:50 и 18:17:24 соответственно. Это время отражает минимизацию оптимизатором времени, необходимого для эксплуатации транспортного средства, указанного в запросе как costPerHour при этом удовлетворяя всем ограничениям временного окна. Использование 17:35:50 в качестве времени начала избавляет транспортное средство от необходимости ждать в месте посещения до начала временного окна посещения. В ответе это отображается как нулевые значения waitDuration .

Посмотреть ответ на пример запроса с временными окнами

{
  "routes": [
    {
      "vehicleStartTime": "2023-01-13T17:35:50Z",
      "vehicleEndTime": "2023-01-13T18:17:24Z",
      "visits": [
        {
          "isPickup": true,
          "startTime": "2023-01-13T17:35:50Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 1,
          "isPickup": true,
          "startTime": "2023-01-13T17:38:20Z",
          "detour": "150s"
        },
        {
          "shipmentIndex": 2,
          "isPickup": true,
          "startTime": "2023-01-13T17:40:50Z",
          "detour": "300s"
        },
        {
          "shipmentIndex": 2,
          "startTime": "2023-01-13T17:50:09Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 1,
          "startTime": "2023-01-13T18:00:00Z",
          "detour": "796s"
        },
        {
          "startTime": "2023-01-13T18:07:35Z",
          "detour": "1520s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:35:50Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:38:20Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:40:50Z"
        },
        {
          "travelDuration": "409s",
          "travelDistanceMeters": 1371,
          "waitDuration": "0s",
          "totalDuration": "409s",
          "startTime": "2023-01-13T17:43:20Z"
        },
        {
          "travelDuration": "341s",
          "travelDistanceMeters": 1312,
          "waitDuration": "0s",
          "totalDuration": "341s",
          "startTime": "2023-01-13T17:54:19Z"
        },
        {
          "travelDuration": "205s",
          "travelDistanceMeters": 636,
          "waitDuration": "0s",
          "totalDuration": "205s",
          "startTime": "2023-01-13T18:04:10Z"
        },
        {
          "travelDuration": "339s",
          "travelDistanceMeters": 1276,
          "waitDuration": "0s",
          "totalDuration": "339s",
          "startTime": "2023-01-13T18:11:45Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 3,
        "travelDuration": "1294s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "1200s",
        "totalDuration": "2494s",
        "travelDistanceMeters": 4595
      },
      "routeCosts": {
        "model.vehicles.cost_per_hour": 27.711111111111112,
        "model.vehicles.cost_per_kilometer": 45.95
      },
      "routeTotalCost": 73.661111111111111
    }
  ],
  "metrics": {
    "aggregatedRouteMetrics": {
      "performedShipmentCount": 3,
      "travelDuration": "1294s",
      "waitDuration": "0s",
      "delayDuration": "0s",
      "breakDuration": "0s",
      "visitDuration": "1200s",
      "totalDuration": "2494s",
      "travelDistanceMeters": 4595
    },
    "usedVehicleCount": 1,
    "earliestVehicleStartTime": "2023-01-13T17:35:50Z",
    "latestVehicleEndTime": "2023-01-13T18:17:24Z",
    "totalCost": 73.661111111111111,
    "costs": {
      "model.vehicles.cost_per_hour": 27.711111111111112,
      "model.vehicles.cost_per_kilometer": 45.95
    }
  }
}
    

Временные окна упорядочивают visits транспортных средств таким образом, чтобы грузы с самыми ранними временными окнами доставлялись первыми.

  1. shipments[2] доставляется в 17:50
  2. shipments[1] доставляются в 18:00
  3. shipments[0] доставлены в 18:07

В примере запроса указаны жесткие временные ограничения, требующие завершения доставки в пределах этих окон. Если выполнение VisitRequests для отправки в течение любого из временных окон невозможно или экономически неэффективно, оптимизатор пропускает отправку. Если у доставки есть penaltyCost , оптимизатор добавляет ее к затратам, указанным в metrics ответа. В противном случае увеличивается свойство skippedMandatoryShipmentCount сообщения OptimizeToursResponse ( REST , gRPC ).

Если вы измените временные окна, сдвинув окно shipment[1] на несколько часов позже (с 18:00 до 21:00), результаты будут другими, как показано в следующих примерах.

См. пример запроса с временными окнами, которые не могут быть удовлетворены.

{
  "populatePolylines": false,
  "populateTransitionPolylines": false,
  "model": {
    "globalStartTime": "2023-01-13T16:00:00Z",
    "globalEndTime": "2023-01-14T16:00:00Z",
    "shipments": [
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789456,
              "longitude": -122.390192
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T18:00:00Z",
                "endTime": "2023-01-13T19:00:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 100.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789116,
              "longitude": -122.395080
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T21:00:00Z",
                "endTime": "2023-01-13T21:30:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 20.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.795242,
              "longitude": -122.399347
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T17:30:00Z",
                "endTime": "2023-01-13T18:00:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 50.0
      }
    ],
    "vehicles": [
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 40.0,
        "costPerKilometer": 10.0
      }
    ]
  }
}
    

См. ответ на второй пример запроса с временными окнами, в которых отгрузка пропускается.

{
  "routes": [
    {
      "vehicleStartTime": "2023-01-13T17:37:49Z",
      "vehicleEndTime": "2023-01-13T18:09:49Z",
      "visits": [
        {
          "isPickup": true,
          "startTime": "2023-01-13T17:37:49Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 2,
          "isPickup": true,
          "startTime": "2023-01-13T17:40:19Z",
          "detour": "150s"
        },
        {
          "shipmentIndex": 2,
          "startTime": "2023-01-13T17:49:38Z",
          "detour": "0s"
        },
        {
          "startTime": "2023-01-13T18:00:00Z",
          "detour": "946s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:37:49Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:40:19Z"
        },
        {
          "travelDuration": "409s",
          "travelDistanceMeters": 1371,
          "waitDuration": "0s",
          "totalDuration": "409s",
          "startTime": "2023-01-13T17:42:49Z"
        },
        {
          "travelDuration": "372s",
          "travelDistanceMeters": 1348,
          "waitDuration": "0s",
          "totalDuration": "372s",
          "startTime": "2023-01-13T17:53:48Z"
        },
        {
          "travelDuration": "339s",
          "travelDistanceMeters": 1276,
          "waitDuration": "0s",
          "totalDuration": "339s",
          "startTime": "2023-01-13T18:04:10Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 2,
        "travelDuration": "1120s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "800s",
        "totalDuration": "1920s",
        "travelDistanceMeters": 3995
      },
      "routeCosts": {
        "model.vehicles.cost_per_kilometer": 39.95,
        "model.vehicles.cost_per_hour": 21.333333333333332
      },
      "routeTotalCost": 61.283333333333331
    }
  ],
  "skippedShipments": [
    {
      "index": 1
    }
  ],
  "metrics": {
    "aggregatedRouteMetrics": {
      "performedShipmentCount": 2,
      "travelDuration": "1120s",
      "waitDuration": "0s",
      "delayDuration": "0s",
      "breakDuration": "0s",
      "visitDuration": "800s",
      "totalDuration": "1920s",
      "travelDistanceMeters": 3995
    },
    "usedVehicleCount": 1,
    "earliestVehicleStartTime": "2023-01-13T17:37:49Z",
    "latestVehicleEndTime": "2023-01-13T18:09:49Z",
    "totalCost": 81.283333333333331,
    "costs": {
      "model.shipments.penalty_cost": 20,
      "model.vehicles.cost_per_hour": 21.333333333333332,
      "model.vehicles.cost_per_kilometer": 39.95
    }
  }
}
    

В этом примере более поздний временной интервал привел к тому, что shipment[1] была пропущена, поскольку дополнительное время работы транспортного средства, необходимое для завершения доставки груза в течение указанного временного окна, превысило стоимость штрафа за отгрузку. Стоимость штрафа за shipment[1] отображается в metrics.costs , а ее индекс — в skippedShipments .

Мягкие ограничения временного окна

Как кратко упоминалось в разделе «Параметры модели затрат» , временные окна могут применяться в качестве мягких ограничений. Мягкие ограничения отличаются от жестких следующим:

  • Жесткие ограничения : не могут быть нарушены, и оптимизатор не предлагает решения, нарушающего ограничение, даже если это означает пропуск отгрузки.
  • Мягкие ограничения : могут быть нарушены. Это означает, что оптимизатор может предоставить решение, нарушающее мягкие ограничения. Однако оптимизатор также применяет стоимость к любому нарушению. Эту стоимость вы указываете в качестве дополнительного свойства во временном окне, обычно как стоимость часа за каждый час до или после временного окна, в котором происходит действие.

Временные окна смягчаются за счет использования softStartTime или softEndTime вместо startTime или endTime соответственно, а также за счет установки costPerHourBeforeSoftStartTime или costPerHourAfterSoftEndTime .

Используйте мягкие ограничения временного окна, когда получение или доставка должны происходить в пределах указанного временного окна, но получение или доставка в пределах этого окна не являются абсолютно необходимыми. Вы можете одновременно использовать жесткие и мягкие ограничения временных окон для выражения бизнес-целей. Например:

  • Жесткое временное окно: указывает часы работы клиента, например, с 9:00 до 17:00.
  • Мягкое временное окно: указывает временные рамки доставки или получения, соответствующие уведомлению, отправленному клиенту, например с 9:00 до 13:00.

В этом примере для отгрузки, которая ранее была пропущена из-за того, что ее временной интервал начался слишком поздно, ограничение времени начала было смягчено. Для других поставок время окончания временных окон также было смягчено.

См. пример запроса с жесткими и мягкими временными окнами.

{
  "populatePolylines": false,
  "populateTransitionPolylines": false,
  "model": {
    "globalStartTime": "2023-01-13T16:00:00Z",
    "globalEndTime": "2023-01-14T16:00:00Z",
    "shipments": [
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789456,
              "longitude": -122.390192
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T18:00:00Z",
                "softEndTime": "2023-01-13T19:00:00Z",
                "costPerHourAfterSoftEndTime": 2.0
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 100.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789116,
              "longitude": -122.395080
            },
            "duration": "250s",
            "timeWindows": [
              {
                "softStartTime": "2023-01-13T21:00:00Z",
                "endTime": "2023-01-13T21:30:00Z",
                "costPerHourBeforeSoftStartTime": 2.0
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 20.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.795242,
              "longitude": -122.399347
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T17:30:00Z",
                "softEndTime": "2023-01-13T18:00:00Z",
                "costPerHourAfterSoftEndTime": 2.0
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 50.0
      }
    ],
    "vehicles": [
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 40.0,
        "costPerKilometer": 10.0
      }
    ]
  }
}
    

Посмотрите ответ на пример запроса с жесткими и мягкими временными окнами.

{
  "routes": [
    {
      "vehicleStartTime": "2023-01-13T17:48:35Z",
      "vehicleEndTime": "2023-01-13T18:24:28Z",
      "visits": [
        {
          "isPickup": true,
          "startTime": "2023-01-13T17:48:35Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 1,
          "isPickup": true,
          "startTime": "2023-01-13T17:51:05Z",
          "detour": "150s"
        },
        {
          "shipmentIndex": 2,
          "isPickup": true,
          "startTime": "2023-01-13T17:53:35Z",
          "detour": "300s"
        },
        {
          "startTime": "2023-01-13T18:00:00Z",
          "detour": "300s"
        },
        {
          "shipmentIndex": 1,
          "startTime": "2023-01-13T18:07:42Z",
          "detour": "493s"
        },
        {
          "shipmentIndex": 2,
          "startTime": "2023-01-13T18:17:27Z",
          "detour": "873s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:48:35Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:51:05Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:53:35Z"
        },
        {
          "travelDuration": "235s",
          "travelDistanceMeters": 795,
          "waitDuration": "0s",
          "totalDuration": "235s",
          "startTime": "2023-01-13T17:56:05Z"
        },
        {
          "travelDuration": "212s",
          "travelDistanceMeters": 791,
          "waitDuration": "0s",
          "totalDuration": "212s",
          "startTime": "2023-01-13T18:04:10Z"
        },
        {
          "travelDuration": "335s",
          "travelDistanceMeters": 1204,
          "waitDuration": "0s",
          "totalDuration": "335s",
          "startTime": "2023-01-13T18:11:52Z"
        },
        {
          "travelDuration": "171s",
          "travelDistanceMeters": 665,
          "waitDuration": "0s",
          "totalDuration": "171s",
          "startTime": "2023-01-13T18:21:37Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 3,
        "travelDuration": "953s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "1200s",
        "totalDuration": "2153s",
        "travelDistanceMeters": 3455
      },
      "routeCosts": {
        "model.shipments.deliveries.time_windows.cost_per_hour_after_soft_end_time": 0.58166666666666667,
        "model.shipments.deliveries.time_windows.cost_per_hour_before_soft_start_time": 5.7433333333333332,
        "model.vehicles.cost_per_hour": 23.922222222222221,
        "model.vehicles.cost_per_kilometer": 34.55
      },
      "routeTotalCost": 64.797222222222217
    }
  ],
  "metrics": {
    "aggregatedRouteMetrics": {
      "performedShipmentCount": 3,
      "travelDuration": "953s",
      "waitDuration": "0s",
      "delayDuration": "0s",
      "breakDuration": "0s",
      "visitDuration": "1200s",
      "totalDuration": "2153s",
      "travelDistanceMeters": 3455
    },
    "usedVehicleCount": 1,
    "earliestVehicleStartTime": "2023-01-13T17:48:35Z",
    "latestVehicleEndTime": "2023-01-13T18:24:28Z",
    "totalCost": 64.797222222222217,
    "costs": {
      "model.vehicles.cost_per_kilometer": 34.55,
      "model.shipments.deliveries.time_windows.cost_per_hour_before_soft_start_time": 5.7433333333333332,
      "model.shipments.deliveries.time_windows.cost_per_hour_after_soft_end_time": 0.58166666666666667,
      "model.vehicles.cost_per_hour": 23.922222222222221
    }
  }
}
    

Там, где в примере только с жесткими ограничениями временного окна полностью пропущена shipment[1] , смягчение временного окна доставки приводит к тому, что оно будет доставлено до начала временного окна. Аналогичным образом, смягчение времени окончания других поставок позволило доставить shipment[2] после окончания его временного окна.

При этом изменились как затраты, так и общий объем поставок:

  • totalCost : уменьшено с 81,283 до 64,797.
  • общее количество выполненных поставок: увеличено с 2 до 3

Оптимизатор нашел менее затратное решение, поскольку ограничения временного окна были смягчены по сравнению с предыдущим примером.

Наконец, свойство metrics.costs также включает новый ключ, указывающий фактические понесенные затраты на основе произведения ограничения и продолжительности времени, в течение которого окно доставки было пропущено. То есть:

  • costPerHourBeforeSoftStartTime 2.0 и
  • время между фактической доставкой и началом временного окна: 2,83583 часа

Результат:

model.shipments.deliveries.time_windows.cost_per_hour_before_soft_start_time : 5.6716666666666669.

Эти метрики позволяют вам провести анализ затрат, чтобы увидеть компромисс между жесткими и мягкими ограничениями, который вы можете использовать для настройки ограничений, чтобы они лучше соответствовали вашим конкретным бизнес-правилам. В этом случае общая стоимость меньше , чем shipment[1].penalty_cost равная 20,0. Оптимизатор определил, что доставить партию раньше экономически выгоднее , чем пропустить ее.

,

OptimizeToursRequest применяет ограничения к следующему:

  • Отгрузки, влияющие на то, как осуществляются перевозки
  • Транспортные средства, влияющие на расчет маршрутов транспортных средств
  • В глобальном масштабе это затрагивает как транспортные средства, так и поставки.

В этом руководстве основное внимание уделяется важнейшему ограничению доставки: временным окнам .

Временные окна — это тип ограничения, которое вы указываете в сообщении OptimizeToursRequest ( REST , gRPC ) для указания временных ограничений для операций по отправке. Этот тип ограничения влияет как на то, когда и как может быть выполнена отправка, так и на назначение транспортного средства для перевозки. При этих ограничениях оптимизатор отдает предпочтение тем транспортным средствам, которые могут наилучшим образом удовлетворить временные ограничения отгрузки.

Ограничения на отгрузку: временные окна

Вы указываете, когда может произойти получение или доставка, в сообщении Shipment.VisitRequest следующим образом:

  • Используйте свойство timeWindows в сообщении ( REST , gRPC ).
  • Укажите время начала и окончания в сообщении TimeWindow ( REST , gRPC ).

Пример запроса с ограничениями временного окна

В приведенном здесь примере показаны три разные поставки, каждая из которых имеет свое собственное окно доставки. Для простоты в этом примере временные окна устанавливаются только для deliveries , но временные окна также можно применять и к самовывозам. Можно указать несколько временных окон, хотя в этом примере для каждой доставки используется только одно VisitRequest .

См. пример запроса с временными окнами

{
  "populatePolylines": false,
  "populateTransitionPolylines": false,
  "model": {
    "globalStartTime": "2023-01-13T16:00:00Z",
    "globalEndTime": "2023-01-14T16:00:00Z",
    "shipments": [
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789456,
              "longitude": -122.390192
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T18:00:00Z",
                "endTime": "2023-01-13T19:00:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 100.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789116,
              "longitude": -122.395080
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T18:00:00Z",
                "endTime": "2023-01-13T18:30:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 20.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.795242,
              "longitude": -122.399347
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T17:30:00Z",
                "endTime": "2023-01-13T18:00:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 50.0
      }
    ],
    "vehicles": [
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 40.0,
        "costPerKilometer": 10.0
      }
    ]
  }
}
    

Пример ответа с ограничениями временного окна

В примере ответа время начала и окончания движения транспортного средства — 17:35:50 и 18:17:24 соответственно. Это время отражает минимизацию оптимизатором времени, необходимого для эксплуатации транспортного средства, указанного в запросе как costPerHour при этом удовлетворяя всем ограничениям временного окна. Использование 17:35:50 в качестве времени начала избавляет транспортное средство от необходимости ждать в месте посещения до начала временного окна посещения. В ответе это отображается как нулевые значения waitDuration .

Посмотреть ответ на пример запроса с временными окнами

{
  "routes": [
    {
      "vehicleStartTime": "2023-01-13T17:35:50Z",
      "vehicleEndTime": "2023-01-13T18:17:24Z",
      "visits": [
        {
          "isPickup": true,
          "startTime": "2023-01-13T17:35:50Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 1,
          "isPickup": true,
          "startTime": "2023-01-13T17:38:20Z",
          "detour": "150s"
        },
        {
          "shipmentIndex": 2,
          "isPickup": true,
          "startTime": "2023-01-13T17:40:50Z",
          "detour": "300s"
        },
        {
          "shipmentIndex": 2,
          "startTime": "2023-01-13T17:50:09Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 1,
          "startTime": "2023-01-13T18:00:00Z",
          "detour": "796s"
        },
        {
          "startTime": "2023-01-13T18:07:35Z",
          "detour": "1520s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:35:50Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:38:20Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:40:50Z"
        },
        {
          "travelDuration": "409s",
          "travelDistanceMeters": 1371,
          "waitDuration": "0s",
          "totalDuration": "409s",
          "startTime": "2023-01-13T17:43:20Z"
        },
        {
          "travelDuration": "341s",
          "travelDistanceMeters": 1312,
          "waitDuration": "0s",
          "totalDuration": "341s",
          "startTime": "2023-01-13T17:54:19Z"
        },
        {
          "travelDuration": "205s",
          "travelDistanceMeters": 636,
          "waitDuration": "0s",
          "totalDuration": "205s",
          "startTime": "2023-01-13T18:04:10Z"
        },
        {
          "travelDuration": "339s",
          "travelDistanceMeters": 1276,
          "waitDuration": "0s",
          "totalDuration": "339s",
          "startTime": "2023-01-13T18:11:45Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 3,
        "travelDuration": "1294s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "1200s",
        "totalDuration": "2494s",
        "travelDistanceMeters": 4595
      },
      "routeCosts": {
        "model.vehicles.cost_per_hour": 27.711111111111112,
        "model.vehicles.cost_per_kilometer": 45.95
      },
      "routeTotalCost": 73.661111111111111
    }
  ],
  "metrics": {
    "aggregatedRouteMetrics": {
      "performedShipmentCount": 3,
      "travelDuration": "1294s",
      "waitDuration": "0s",
      "delayDuration": "0s",
      "breakDuration": "0s",
      "visitDuration": "1200s",
      "totalDuration": "2494s",
      "travelDistanceMeters": 4595
    },
    "usedVehicleCount": 1,
    "earliestVehicleStartTime": "2023-01-13T17:35:50Z",
    "latestVehicleEndTime": "2023-01-13T18:17:24Z",
    "totalCost": 73.661111111111111,
    "costs": {
      "model.vehicles.cost_per_hour": 27.711111111111112,
      "model.vehicles.cost_per_kilometer": 45.95
    }
  }
}
    

Временные окна упорядочивают visits транспортных средств таким образом, чтобы грузы с самыми ранними временными окнами доставлялись первыми.

  1. shipments[2] доставляется в 17:50
  2. shipments[1] доставляются в 18:00
  3. shipments[0] доставлены в 18:07

В примере запроса указаны жесткие временные ограничения, требующие завершения доставки в пределах этих окон. Если выполнение запросов VisitRequests в любом из временных окон невозможно или экономически неэффективно, оптимизатор пропускает отправку. Если у доставки есть penaltyCost , оптимизатор добавляет ее к затратам, указанным в metrics ответа. В противном случае увеличивается свойство skippedMandatoryShipmentCount сообщения OptimizeToursResponse ( REST , gRPC ).

Если вы измените временные окна, сдвинув окно shipment[1] на несколько часов позже (с 18:00 до 21:00), результаты будут другими, как показано в следующих примерах.

См. пример запроса с временными окнами, которые не могут быть удовлетворены.

{
  "populatePolylines": false,
  "populateTransitionPolylines": false,
  "model": {
    "globalStartTime": "2023-01-13T16:00:00Z",
    "globalEndTime": "2023-01-14T16:00:00Z",
    "shipments": [
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789456,
              "longitude": -122.390192
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T18:00:00Z",
                "endTime": "2023-01-13T19:00:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 100.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789116,
              "longitude": -122.395080
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T21:00:00Z",
                "endTime": "2023-01-13T21:30:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 20.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.795242,
              "longitude": -122.399347
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T17:30:00Z",
                "endTime": "2023-01-13T18:00:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 50.0
      }
    ],
    "vehicles": [
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 40.0,
        "costPerKilometer": 10.0
      }
    ]
  }
}
    

См. ответ на второй пример запроса с временными окнами, в которых отгрузка пропускается.

{
  "routes": [
    {
      "vehicleStartTime": "2023-01-13T17:37:49Z",
      "vehicleEndTime": "2023-01-13T18:09:49Z",
      "visits": [
        {
          "isPickup": true,
          "startTime": "2023-01-13T17:37:49Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 2,
          "isPickup": true,
          "startTime": "2023-01-13T17:40:19Z",
          "detour": "150s"
        },
        {
          "shipmentIndex": 2,
          "startTime": "2023-01-13T17:49:38Z",
          "detour": "0s"
        },
        {
          "startTime": "2023-01-13T18:00:00Z",
          "detour": "946s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:37:49Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:40:19Z"
        },
        {
          "travelDuration": "409s",
          "travelDistanceMeters": 1371,
          "waitDuration": "0s",
          "totalDuration": "409s",
          "startTime": "2023-01-13T17:42:49Z"
        },
        {
          "travelDuration": "372s",
          "travelDistanceMeters": 1348,
          "waitDuration": "0s",
          "totalDuration": "372s",
          "startTime": "2023-01-13T17:53:48Z"
        },
        {
          "travelDuration": "339s",
          "travelDistanceMeters": 1276,
          "waitDuration": "0s",
          "totalDuration": "339s",
          "startTime": "2023-01-13T18:04:10Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 2,
        "travelDuration": "1120s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "800s",
        "totalDuration": "1920s",
        "travelDistanceMeters": 3995
      },
      "routeCosts": {
        "model.vehicles.cost_per_kilometer": 39.95,
        "model.vehicles.cost_per_hour": 21.333333333333332
      },
      "routeTotalCost": 61.283333333333331
    }
  ],
  "skippedShipments": [
    {
      "index": 1
    }
  ],
  "metrics": {
    "aggregatedRouteMetrics": {
      "performedShipmentCount": 2,
      "travelDuration": "1120s",
      "waitDuration": "0s",
      "delayDuration": "0s",
      "breakDuration": "0s",
      "visitDuration": "800s",
      "totalDuration": "1920s",
      "travelDistanceMeters": 3995
    },
    "usedVehicleCount": 1,
    "earliestVehicleStartTime": "2023-01-13T17:37:49Z",
    "latestVehicleEndTime": "2023-01-13T18:09:49Z",
    "totalCost": 81.283333333333331,
    "costs": {
      "model.shipments.penalty_cost": 20,
      "model.vehicles.cost_per_hour": 21.333333333333332,
      "model.vehicles.cost_per_kilometer": 39.95
    }
  }
}
    

В этом примере более поздний временной интервал привел к тому, что shipment[1] была пропущена, поскольку дополнительное время работы транспортного средства, необходимое для завершения доставки груза в течение указанного временного окна, превысило стоимость штрафа за отгрузку. Стоимость штрафа за shipment[1] отображается в metrics.costs , а ее индекс — в skippedShipments .

Мягкие ограничения временного окна

Как кратко упоминалось в разделе «Параметры модели затрат» , временные окна могут применяться в качестве мягких ограничений. Мягкие ограничения отличаются от жестких следующим:

  • Жесткие ограничения : не могут быть нарушены, и оптимизатор не предлагает решения, нарушающего ограничение, даже если это означает пропуск отгрузки.
  • Мягкие ограничения : могут быть нарушены. Это означает, что оптимизатор может предоставить решение, нарушающее мягкие ограничения. Однако оптимизатор также применяет стоимость к любому нарушению. Эту стоимость вы указываете в качестве дополнительного свойства во временном окне, обычно как стоимость часа за каждый час до или после временного окна, в котором происходит действие.

Временные окна смягчаются за счет использования softStartTime или softEndTime вместо startTime или endTime соответственно, а также за счет установки costPerHourBeforeSoftStartTime или costPerHourAfterSoftEndTime .

Используйте мягкие ограничения временного окна, когда получение или доставка должны происходить в пределах указанного временного окна, но получение или доставка в пределах этого окна не являются абсолютно необходимыми. Вы можете использовать жесткие и мягкие ограничения временного окна вместе, чтобы выразить бизнес-цели. Например:

  • Жесткое временное окно: указывает часы работы клиента, например, с 9:00 до 17:00.
  • Мягкое временное окно: указывает временные рамки доставки или получения, соответствующие уведомлению, отправленному клиенту, например с 9:00 до 13:00.

В этом примере для отгрузки, которая ранее была пропущена из-за того, что ее временной интервал начался слишком поздно, ограничение времени начала было смягчено. Для других поставок время окончания временных окон также было смягчено.

См. пример запроса с жесткими и мягкими временными окнами.

{
  "populatePolylines": false,
  "populateTransitionPolylines": false,
  "model": {
    "globalStartTime": "2023-01-13T16:00:00Z",
    "globalEndTime": "2023-01-14T16:00:00Z",
    "shipments": [
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789456,
              "longitude": -122.390192
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T18:00:00Z",
                "softEndTime": "2023-01-13T19:00:00Z",
                "costPerHourAfterSoftEndTime": 2.0
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 100.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789116,
              "longitude": -122.395080
            },
            "duration": "250s",
            "timeWindows": [
              {
                "softStartTime": "2023-01-13T21:00:00Z",
                "endTime": "2023-01-13T21:30:00Z",
                "costPerHourBeforeSoftStartTime": 2.0
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 20.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.795242,
              "longitude": -122.399347
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T17:30:00Z",
                "softEndTime": "2023-01-13T18:00:00Z",
                "costPerHourAfterSoftEndTime": 2.0
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 50.0
      }
    ],
    "vehicles": [
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 40.0,
        "costPerKilometer": 10.0
      }
    ]
  }
}
    

Посмотрите ответ на пример запроса с жесткими и мягкими временными окнами.

{
  "routes": [
    {
      "vehicleStartTime": "2023-01-13T17:48:35Z",
      "vehicleEndTime": "2023-01-13T18:24:28Z",
      "visits": [
        {
          "isPickup": true,
          "startTime": "2023-01-13T17:48:35Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 1,
          "isPickup": true,
          "startTime": "2023-01-13T17:51:05Z",
          "detour": "150s"
        },
        {
          "shipmentIndex": 2,
          "isPickup": true,
          "startTime": "2023-01-13T17:53:35Z",
          "detour": "300s"
        },
        {
          "startTime": "2023-01-13T18:00:00Z",
          "detour": "300s"
        },
        {
          "shipmentIndex": 1,
          "startTime": "2023-01-13T18:07:42Z",
          "detour": "493s"
        },
        {
          "shipmentIndex": 2,
          "startTime": "2023-01-13T18:17:27Z",
          "detour": "873s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:48:35Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:51:05Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:53:35Z"
        },
        {
          "travelDuration": "235s",
          "travelDistanceMeters": 795,
          "waitDuration": "0s",
          "totalDuration": "235s",
          "startTime": "2023-01-13T17:56:05Z"
        },
        {
          "travelDuration": "212s",
          "travelDistanceMeters": 791,
          "waitDuration": "0s",
          "totalDuration": "212s",
          "startTime": "2023-01-13T18:04:10Z"
        },
        {
          "travelDuration": "335s",
          "travelDistanceMeters": 1204,
          "waitDuration": "0s",
          "totalDuration": "335s",
          "startTime": "2023-01-13T18:11:52Z"
        },
        {
          "travelDuration": "171s",
          "travelDistanceMeters": 665,
          "waitDuration": "0s",
          "totalDuration": "171s",
          "startTime": "2023-01-13T18:21:37Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 3,
        "travelDuration": "953s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "1200s",
        "totalDuration": "2153s",
        "travelDistanceMeters": 3455
      },
      "routeCosts": {
        "model.shipments.deliveries.time_windows.cost_per_hour_after_soft_end_time": 0.58166666666666667,
        "model.shipments.deliveries.time_windows.cost_per_hour_before_soft_start_time": 5.7433333333333332,
        "model.vehicles.cost_per_hour": 23.922222222222221,
        "model.vehicles.cost_per_kilometer": 34.55
      },
      "routeTotalCost": 64.797222222222217
    }
  ],
  "metrics": {
    "aggregatedRouteMetrics": {
      "performedShipmentCount": 3,
      "travelDuration": "953s",
      "waitDuration": "0s",
      "delayDuration": "0s",
      "breakDuration": "0s",
      "visitDuration": "1200s",
      "totalDuration": "2153s",
      "travelDistanceMeters": 3455
    },
    "usedVehicleCount": 1,
    "earliestVehicleStartTime": "2023-01-13T17:48:35Z",
    "latestVehicleEndTime": "2023-01-13T18:24:28Z",
    "totalCost": 64.797222222222217,
    "costs": {
      "model.vehicles.cost_per_kilometer": 34.55,
      "model.shipments.deliveries.time_windows.cost_per_hour_before_soft_start_time": 5.7433333333333332,
      "model.shipments.deliveries.time_windows.cost_per_hour_after_soft_end_time": 0.58166666666666667,
      "model.vehicles.cost_per_hour": 23.922222222222221
    }
  }
}
    

Там, где в примере только с жесткими ограничениями временного окна полностью пропущена shipment[1] , смягчение временного окна доставки приводит к тому, что оно будет доставлено до начала временного окна. Аналогичным образом, смягчение времени окончания других поставок позволило доставить shipment[2] после окончания его временного окна.

При этом изменились как затраты, так и общий объем поставок:

  • totalCost : уменьшено с 81,283 до 64,797.
  • общее количество выполненных поставок: увеличено с 2 до 3

Оптимизатор нашел менее затратное решение, поскольку ограничения временного окна были смягчены по сравнению с предыдущим примером.

Наконец, свойство metrics.costs также включает новый ключ, указывающий фактические понесенные затраты на основе произведения ограничения и продолжительности времени, в течение которого окно доставки было пропущено. То есть:

  • costPerHourBeforeSoftStartTime 2.0 и
  • время между фактической доставкой и началом временного окна: 2,83583 часа

Результат:

model.shipments.deliveries.time_windows.cost_per_hour_before_soft_start_time : 5.6716666666666669.

Эти метрики позволяют вам провести анализ затрат, чтобы увидеть компромисс между жесткими и мягкими ограничениями, который вы можете использовать для настройки ограничений, чтобы они лучше соответствовали вашим конкретным бизнес-правилам. В этом случае общая стоимость меньше , чем shipment[1].penalty_cost равная 20,0. Оптимизатор определил, что доставить партию раньше экономически выгоднее , чем пропустить ее.