أدوات حل المسائل الرياضية

لمساعدة الطلاب والمعلمين والمستخدمين الآخرين في حل المسائل الرياضية، يمكنك استخدام البيانات المنظَّمة للإشارة إلى نوع المسألة الرياضية والروابط المؤدية إلى التعليمات المفصّلة لحلّ مسائل محدّدة. في ما يلي مثال على الشكل الذي تظهر به أدوات حلّ المسائل الرياضية في نتائج "بحث Google" (المظهر عرضة للتغيير):

مثال على نتيجة منسّقة لأدوات حلّ المسائل الرياضية

كيفية إضافة البيانات المنظَّمة

البيانات المنظَّمة هي تنسيق موحّد لتقديم معلومات عن صفحة محدّدة وتصنيف محتواها. وإذا كنت لا تزال مبتدئًا في مجال البيانات المنظَّمة، يمكنك الاطّلاع على المزيد من المعلومات حول آلية عمل البيانات المنظَّمة.

إليك نظرة عامة حول كيفية إنشاء بيانات منظَّمة واختبارها وإصدارها. للحصول على دليل مفصّل حول كيفية إضافة بيانات منظَّمة إلى صفحة ويب، يمكنك الاطّلاع على الدرس التطبيقي حول الترميز الخاص بالبيانات المنظَّمة.

  1. أضِف السمات المطلوبة. استنادًا إلى التنسيق الذي تستخدمه، تعرَّف على مكان إدراج البيانات المنظَّمة في الصفحة.
  2. اتّبِع الإرشادات.
  3. تحقّق من صحة الرمز باستخدام اختبار النتائج المنسّقة.
  4. انشر بعض الصفحات التي تتضمّن بياناتك المنظَّمة واستخدِم أداة فحص عنوان URL لاختبار طريقة عرض الصفحة في محرّك البحث Google. تأكّد من إمكانية وصول محرّك البحث Google إلى صفحتك ومن عدم حظرها باستخدام ملف robots.txt أو علامة noindex أو متطلبات تسجيل الدخول. إذا بدت الصفحة جيدة، يمكنك أن تطلب من Google إعادة الزحف إلى عناوين URL الخاصة بك.
  5. لإعلام Google بأي تغييرات لاحقة، ننصحك بإرسال ملف Sitemap. يمكنك برمجة هذا الإجراء باستخدام واجهة برمجة التطبيقات لملف Sitemap في Search Console.

أمثلة

إجراء واحد للحل

في ما يلي مثال على صفحة رئيسية لأداة حل المسائل الرياضية تتضمّن إجراءً واحدًا للحلّ يمكنه حلّ المعادلات المتعددة الحدود ومسائل المشتقات، وتتوفّر باللغتين الإنجليزية والإسبانية.


<html>
<head>
<title>An awesome math solver</title>
</head>
<body>
<script type="application/ld+json">
{
  "@context": "https://schema.org",
  "@type": ["MathSolver", "LearningResource"],
  "name": "An awesome math solver",
  "url": "https://www.mathdomain.com/",
  "usageInfo": "https://www.mathdomain.com/privacy",
  "inLanguage": "en",
  "potentialAction": [{
    "@type": "SolveMathAction",
    "target": "https://mathdomain.com/solve?q={math_expression_string}",
    "mathExpression-input": "required name=math_expression_string",
    "eduQuestionType": ["Polynomial Equation","Derivative"]
   }],
  "learningResourceType": "Math solver"
},
{
  "@context": "https://schema.org",
  "@type": ["MathSolver", "LearningResource"],
  "name": "Un solucionador de matemáticas increíble",
  "url": "https://es.mathdomain.com/",
  "usageInfo": "https://es.mathdomain.com/privacy",
  "inLanguage": "es",
  "potentialAction": [{
    "@type": "SolveMathAction",
    "target": "https://es.mathdomain.com/solve?q={math_expression_string}",
    "mathExpression-input": "required name=math_expression_string",
    "eduQuestionType": ["Polynomial Equation","Derivative"]
   }],
  "learningResourceType": "Math solver"
}
</script>
</body>
</html>

إجراءان للحلّ

في ما يلي مثال على صفحة رئيسية تتضمّن نقطتَي نهاية للحلّ: نقطة نهاية لحل المعادلات المتعددة الحدود ونقطة نهاية أخرى لحلّ معادلات حساب المثلثات. لا يتوفّر هذا الترميز إلا باللغة الإنجليزية.


<html>
<head>
<title>An awesome math solver</title>
</head>
<body>
<script type="application/ld+json">
{
  "@context": "https://schema.org",
  "@type": ["MathSolver", "LearningResource"],
  "name": "An awesome math solver",
  "url": "https://www.mathdomain.com/",
  "usageInfo": "https://www.mathdomain.com/privacy",
  "inLanguage": "en",
  "potentialAction": [{
     "@type": "SolveMathAction",
     "target": "https://mathdomain.com/solve?q={math_expression_string}",
     "mathExpression-input": "required name=math_expression_string",
     "eduQuestionType": "Polynomial Equation"
   },
   {
     "@type": "SolveMathAction",
     "target": "https://mathdomain.com/trig?q={math_expression_string}",
     "mathExpression-input": "required name=math_expression_string",
     "eduQuestionType": "Trigonometric Equation"
   }],
  "learningResourceType": "Math solver"
}
</script>
</body>
</html>

الإرشادات

يجب اتّباع الإرشادات التالية لتكون صفحتك مؤهّلة للعرض في النتائج المنسّقة لأدوات حل المسائل الحسابية:

الإرشادات الفنية

  • أضِف بيانات MathSolver المنظَّمة إلى الصفحة الرئيسية في موقعك الإلكتروني.
  • تأكَّد من أنّ إعدادات التحميل في مضيف موقعك الإلكتروني تسمح بعمليات الزحف المتكرّرة.
  • إذا كان لديك عدة نُسخ متطابقة من أداة حلّ المسائل الرياضية نفسها تتم استضافتها ضمن عناوين URL مختلفة، استخدِم عناوين URL الأساسية في كل نسخة من الصفحة.
  • لا نسمح بأدوات حلّ المسائل الرياضية التي تم إخفاؤها تمامًا خلف معلومات تسجيل الدخول أو نظام حظر الاشتراك غير المدفوع. بعد انتقال المستخدمين من الميزة على Google إلى موقعك الإلكتروني، يجب أن يتمكّنوا من الوصول بسهولة إلى الحلّ والاطّلاع على التعليمات المفصّلة لحلّ مشكلتهم الأساسية. ويمكن إخفاء المحتوى الإضافي خلف معلومات تسجيل الدخول أو نظام حظر الاشتراك غير المدفوع.

إرشادات المحتوى

لقد وضعنا إرشادات المحتوى الخاصة بأداة حلّ المسائل الرياضية هذه لضمان وصول المستخدمين إلى الموارد التعليمية ذات الصلة. وإذا اكتشفنا محتوى يخالف هذه السياسات، سنستجيب بشكل مناسب، ما قد يتضمّن اتّخاذ إجراء يدوي ومنع صفحاتك من الظهور في تجربة أداة حلّ المسائل الرياضية على Google.

  • لا نسمح بنشر محتوى ترويجي يتم عرضه على أنّه أداة حلّ المسائل الرياضية بطريقة مخادعة، مثل المحتوى الذي ينشره طرف ثالث (على سبيل المثال، برامج الشركاء التابعين).
  • تقع على عاتقك مسؤولية ضمان دقة وجودة أداة حلّ المسائل الرياضية المعروضة من خلال هذه الميزة. وإذا تبيّن أن قدرًا معيّنًا من بياناتك غير دقيق استنادًا إلى عمليات المراجعة التي نجريها للجودة، قد تتم إزالة أداة الحلّ من الميزة إلى أن تحلّ المشاكل بناءً على درجة الخطورة. ينطبق هذا الأمر على:
    • دقة أنواع المسائل التي يمكن للأداة حلّها
    • دقة الحلول للمسائل الرياضية التي تؤكّد الأداة إمكانية حلّها.

تعريفات أنواع البيانات المنظَّمة

يجب تضمين الخصائص المطلوبة حتى يصبح المحتوى مؤهلاً للعرض على شكل نتيجة منسّقة. يمكنك أيضًا تضمين السمات المقترَحة لإضافة مزيد من المعلومات إلى بياناتك المنظَّمة، ما يؤدي إلى تحسين التجربة التي تقدمها للمستخدم.

MathSolver

MathSolver هي أداة تساعد الطلاب والمعلمين والمستخدمين الآخرين في حل المسائل الرياضية من خلال وضع حلول مفصّلة. استخدِم بيانات MathSolver المنظَّمة في الصفحة الرئيسية على موقعك الإلكتروني.

يتوفّر التعريف الكامل للسمة MathSolver على schema.org/MathSolver.

السمات المطلوبة
potentialAction

SolveMathAction

تمثّل هذه السمة الإجراء الذي يؤدي إلى تفسير رياضي (على سبيل المثال، حلّ مفصّل أو رسم بياني) لتعبير حسابي.


{
"@type": "MathSolver",
"potentialAction": [{
  "@type": "SolveMathAction",
  "target": "https://mathdomain.com/solve?q={math_expression_string}",
  "mathExpression-input": "required name=math_expression_string",
  "eduQuestionType": "Polynomial Equation"
  }]
}
potentialAction.mathExpression-input

Text

تمثّل هذه السمة تعبيرًا حسابيًا (على سبيل المثال: x^2-3x=0) يمكن حلّه لمتغير محدد أو تبسيطه أو تحويله. وقد يكون هذا التعبير بتنسيقات متعدّدة (على سبيل المثال: LaTeX أو Asci-Math أو التعبيرات الحسابية التي يمكنك كتابتها باستخدام لوحة المفاتيح).

url

URL

تمثّل هذه السمة عنوان URL الخاص بالسمة MathSolver.

usageInfo

URL

تمثّل هذه السمة سياسة الخصوصية المتّبعة على موقعك الإلكتروني الخاص بحل المسائل الحسابية.


{
  "@type": "MathSolver",
  "usageInfo": "https://www.mathdomain.com/privacy"
}
potentialAction.target

EntryPoint

تمثّل هذه السمة نقطة إدخال عنوان URL الهدف لأحد الإجراءات. وتقبل السمة potentialAction.target سلسلة لتمثيل التعبير الحسابي الذي يتم حلّه عن طريق الإجراء.


{
"@type": "MathSolver",
"potentialAction": [{
  "@type": "SolveMathAction",
  "target": "https://mathdomain.com/solve?q={math_expression_string}"
  }]
}
السمات المقترَحة
inLanguage

Text

تمثّل هذه السمة اللغات المتاحة على الموقع الإلكتروني الخاص بحلّ المسائل الرياضية. انتقِل إلى هذا الجدول للاطّلاع على قائمة باللغات المحتملة.


{
  "@type": "MathSolver",
  "inLanguage": "es"
}
assesses

Text قائمة تعريفات أنواع المسائل

تمثّل هذه السمة أنواع المسائل التي يتم حلّها باستخدام HowTo. استخدِم السمة assesses إذا كنت تستخدم ترميز HowTo بالإضافة إلى ترميز MathSolver.


{
  "@type": "MathSolver",
  "assesses": "Polynomial Equation"
}
potentialAction.eduQuestionType

Text قائمة تعريفات أنواع المسائل

تمثّل هذه السمة أنواع المسائل التي يمكن حلّها باستخدام السمة potentialAction.target.


{
  "@type": "SolveMathAction",
  "eduQuestionType": "Polynomial Equation"
}

LearningResource

تشير السمة LearningResource إلى أن موضوع الترميز هو مورد يساعد الطلاب والمعلمين وغيرهم من المستخدمين في التعلّم الدراسي. استخدِم LearningResource على الصفحة الرئيسية في موقعك الإلكتروني.

يتوفّر التعريف الكامل للسمة LearningResource على schema.org/LearningResource.

السمات المطلوبة
learningResourceType

Text

تمثّل هذه السمة نوع هذا المورد التعليمي. ويجب استخدام هذه القيمة الثابتة: Math Solver.


{
  "@type": ["MathSolver", "LearningResource"],
  "learningResourceType": "Math Solver"
}

تعريفات أنواع المسائل

استخدِم القائمة التالية لأنواع المسائل باعتبارها eduQuestionType للسمة MathSolver.potentialAction أو للحقل assesses في MathSolver عند مرافقة MathSolver للسمة HowTo التي تقدّم تعليمات بخصوص مسألة حسابية معيّنة.

أمثلة على المسائل الحسابية (هذه القائمة ليست شاملة)
Absolute Value Equation

تمثّل هذه السمة معادلات القيمة المطلقة. على سبيل المثال: ‎|x - 5| = 9

Algebra

تمثّل هذه السمة نوعًا عامًا من المسائل يمكن وضعه مع أنواع أخرى من المسائل. على سبيل المثال: المعادلات المتعددة الحدود والدوال الأسية والتعبيرات الجذرية

Arc Length

تمثّل هذه السمة مسائل طول القوس. على سبيل المثال: حدِّد طول x =‏ 4 (3 + y)^‏2, 1 < y < 4.

Arithmetic

مسائل رياضية على سبيل المثال: أوجِد مجموع 5 + 7.

Biquadratic Equation

تمثّل هذه السمة المعادلات الثنائية التربيع. على سبيل المثال: x^4 - x^2 - 2 = 0

Calculus

تمثّل هذه السمة نوعًا عامًا من المسائل يمكن وضعه مع أنواع أخرى من المسائل. على سبيل المثال: التكامل والمشتقات والمعادلات التفاضلية

Characteristic Polynomial

أوجِد متعددة الحدود المميزة لـ {{1,2,5}, {3,-1,1}, {1,2,3}}.

Circle

تمثّل هذه السمة المسائل المتعلقة بالدوائر. على سبيل المثال: أوجِد نصف قطر x^2 + y^2 = 3.

Derivative

أوجِد مشتق 5x^4 + 2x^3 + 4x - 2.

Differential Equation

تمثّل هذه السمة مسائل المعادلات التفاضلية. على سبيل المثال: y+dy/dx=5x

Distance

تمثّل هذه السمة مسائل المسافة. على سبيل المثال: أوجِد المسافة بين ‎(6,-1) و‎(-3,2)

Eigenvalue

مسائل القيَم الذاتية على سبيل المثال: أوجِد القيَم الذاتية للمصفوفة [[-6، 3]، [4، 5]].

Eigenvector

مسائل المتّجِه الذاتي على سبيل المثال: أوجِد المتّجِه الذاتي للمصفوفة [[-6، 3]، [4، 5]] مع القيَم الذاتية لـ [-7، 6].

Ellipse

تمثّل هذه السمة المسائل المرتبطة بالقطع الناقص. على سبيل المثال، احسب نقطتَي التقاطع مع الأس السيني والأس الصادي في المعادلة 9x^2 + 4y^2 = 36.

Exponential Equation

تمثّل هذه السمة معادلات الدالة الأسية. على سبيل المثال: 7‎^x = 9

Function

تمثّل هذه السمة التبسيطات المتعددة الحدود. على سبيل المثال: ‎(x-5)^2 * (x+5)^2

Function Composition

f(g(x)) إذا كان f(x)=x^2-2x, g(x)=2x-2

Geometry

تمثّل هذه السمة نوعًا عامًا من المسائل يمكن وضعه مع أنواع أخرى من المسائل. على سبيل المثال: الدائرة والقطع الناقص والقطع المكافئ والانحدار

Hyperbola

تمثّل هذه السمة مسائل القطع الزائد. على سبيل المثال: أوجِد نقطة التقاطع مع الأس السيني في المعادلة x (x^2)/4 - (y^2)/5 = 1

Inflection Point

أوجِد نقطة الانعطاف في المعادلة f(x) = 1/2x^4 + x^3 - 6x^2

Integral

تكامل جذر (x^2 - y^2)

Intercept

تمثّل هذه السمة مسائل تقاطع الخطوط. على سبيل المثال: أوجِد نقطة تقاطع الخط y = 10x - 5 مع الأس السيني.

Limit

مسائل النهاية على سبيل المثال: أوجِد نهاية x عندما يقترب x من 1 في المعادلة (x^2-1)/(x-1).

Line Equation

تمثّل هذه السمة مسائل معادلات الخط المستقيم. على سبيل المثال: أوجِد معادلة الخط الذي يمر بالنقطتين ‎(-7,-4) و‎(-2,-6).

Linear Algebra

تمثّل هذه السمة نوعًا عامًا من المسائل يمكن وضعه مع أنواع أخرى من المسائل. على سبيل المثال: المصفوفة ومتعددة الحدود المميزة

Linear Equation

تمثّل هذه السمة المعادلات الخطية. على سبيل المثال: 4x - 3 = 2x + 9

Linear Inequality

تمثّل هذه السمة المتباينات الخطية. على سبيل المثال: 5x - 6 > 3x - 8

Logarithmic Equation

تمثّل هذه السمة المعادلات اللوغاريتمية. على سبيل المثال: log(x) = log(100)

Logarithmic Inequality

تمثّل هذه السمة المتباينات اللوغاريتمية. على سبيل المثال: log(x) > log(100)

Matrix

الاختزال صفيًا بمقدار {{1,2,5}, {3,-1,1}, {1,2,3}}

Midpoint

تمثّل هذه السمة المسائل حول نقطة الوسط. على سبيل المثال: أوجِد نقطة الوسط ما بين ‎(-3, 7) و‎(5, -2).

Parabola

تمثّل هذه السمة مسائل القطع المكافئ. على سبيل المثال: أوجِد الرأس في y2 - 4x - 4y = 0.

Parallel

تمثّل هذه السمة مسائل الخطوط المتوازية. على سبيل المثال: هل الخطان (y=10x + 5 و‎y + 20x + 10) متوازيان؟

Perpendicular

تمثّل هذه السمة مسائل التعامد. على سبيل المثال: هل الخطان (y=10x + 5 وy + 20x + 10) متعامدان؟

Polynomial Equation

تمثّل هذه السمة المعادلات المتعددة الحدود. على سبيل المثال: x^5 - 3x = 0

Polynomial Expression

تمثّل هذه السمة التعبيرات المتعددة الحدود. على سبيل المثال: ‎(x - 5)^4 * (x + 5)^2

Polynomial Inequality

تمثّل هذه السمة المتباينات المتعددة الحدود. على سبيل المثال: x^4 - x^2 - 6 > x^3 - 3x^2

Quadratic Equation

تمثّل هذه السمة المعادلات التربيعية. على سبيل المثال: x^2 - 3x - 4 = 0

Quadratic Expression

تمثّل هذه السمة التعبيرات التربيعية. على سبيل المثال: x^2 - 3x - 2

Quadratic Inequality

تمثّل هذه السمة المتباينات التربيعية. على سبيل المثال: x^2 - x - 6 > x^2 - 3x

Radical Equation

تمثّل هذه السمة المعادلات الجذرية. على سبيل المثال: sqrt(x) - x = 0

Radical Inequality

تمثّل هذه السمة المتباينات الجذرية. على سبيل المثال: sqrt(x) - x > 0

Rational Equation

تمثّل هذه السمة المعادلات النسبية. على سبيل المثال: ‎5/(x - 3) = 2/(x - 1)

Rational Expression

تمثّل هذه السمة التعبيرات النسبية. على سبيل المثال: ‎1/(x^3 + 4x^2 + 5x + 2)

Rational Inequality

تمثّل هذه السمة المتباينات النسبية. على سبيل المثال: ‎5/(x - 3) > 2/(x - 1)

Slope

تمثّل هذه السمة مسائل الانحدار. على سبيل المثال: أوجِد الانحدار في y = 10x + 5.

Statistics

مسائل الإحصاءات على سبيل المثال: أوجِد متوسط مجموعة من الأرقام (3، 8، 2، 10)

System of Equations

مسائل المعادلات المترابطة على سبيل المثال: أوجِد حلّاً للمعادلة التالية2x + 5y = 16;3x - 5y = - 1.

Trigonometry

أوجِد حلّ جيب(t) + جيب تمام(t) = 1.