In diesem Leitfaden wird gezeigt, wie die Anzahl der in einer Lösung zur Routenoptimierung bereitgestellten Fahrzeuge je nach Anfrageparametern variieren kann.
Die Route Optimization API optimiert nicht nur die Reihenfolge der Sendungsauslieferung, sondern weist diese Sendungen auch Fahrzeugen zu, um die Kosten unter den von Ihnen verwalteten Einschränkungen zu optimieren.
Im ersten Beispiel entspricht die Anzahl der Fahrzeuge der Anzahl der Sendungen. Alle Fahrzeuge haben dieselben Kosten- und Standorteigenschaften. Für jedes Fahrzeug werden Kosten pro Betriebsstunde und pro zurückgelegtem Kilometer angegeben, um Fahrtzeit und -strecke zu minimieren. Man könnte davon ausgehen, dass mehreren Fahrzeugen Sendungen zugewiesen werden. Die Beispielantwort zeigt jedoch die kostengünstigste Lösung unter Berücksichtigung der angegebenen Parameter des Kostenmodells.
Beispielanfrage mit mehreren Fahrzeugen
{ "model": { "globalStartTime": "2023-01-13T16:00:00-08:00", "globalEndTime": "2023-01-14T16:00:00-08:00", "shipments": [ { "deliveries": [ { "arrivalLocation": { "latitude": 37.789456, "longitude": -122.390192 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 100.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.789116, "longitude": -122.395080 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 5.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.795242, "longitude": -122.399347 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 50.0 } ], "vehicles": [ { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerHour": 50.0, "costPerKilometer": 10.0 }, { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerHour": 50.0, "costPerKilometer": 10.0 }, { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerHour": 50.0, "costPerKilometer": 10.0 } ] } }
Antwort auf die Anfrage mit mehreren Fahrzeugen ansehen
{ "routes": [ { "vehicleStartTime": "2023-01-14T00:00:00Z", "vehicleEndTime": "2023-01-14T00:28:22Z", "visits": [ { "isPickup": true, "startTime": "2023-01-14T00:00:00Z", "detour": "0s" }, { "shipmentIndex": 2, "isPickup": true, "startTime": "2023-01-14T00:02:30Z", "detour": "150s" }, { "startTime": "2023-01-14T00:08:55Z", "detour": "150s" }, { "shipmentIndex": 2, "startTime": "2023-01-14T00:21:21Z", "detour": "572s" } ], "transitions": [ { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-14T00:00:00Z" }, { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-14T00:02:30Z" }, { "travelDuration": "235s", "travelDistanceMeters": 795, "waitDuration": "0s", "totalDuration": "235s", "startTime": "2023-01-14T00:05:00Z" }, { "travelDuration": "496s", "travelDistanceMeters": 1893, "waitDuration": "0s", "totalDuration": "496s", "startTime": "2023-01-14T00:13:05Z" }, { "travelDuration": "171s", "travelDistanceMeters": 665, "waitDuration": "0s", "totalDuration": "171s", "startTime": "2023-01-14T00:25:31Z" } ], "metrics": { "performedShipmentCount": 2, "travelDuration": "902s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "800s", "totalDuration": "1702s", "travelDistanceMeters": 3353 }, "routeCosts": { "model.vehicles.cost_per_kilometer": 33.53, "model.vehicles.cost_per_hour": 23.638888888888889 }, "routeTotalCost": 57.168888888888887 }, { "vehicleIndex": 1 }, { "vehicleIndex": 2 } ], "skippedShipments": [ { "index": 1 } ], "metrics": { "aggregatedRouteMetrics": { "performedShipmentCount": 2, "travelDuration": "902s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "800s", "totalDuration": "1702s", "travelDistanceMeters": 3353 }, "usedVehicleCount": 1, "earliestVehicleStartTime": "2023-01-14T00:00:00Z", "latestVehicleEndTime": "2023-01-14T00:28:22Z", "totalCost": 62.168888888888887, "costs": { "model.vehicles.cost_per_hour": 23.638888888888889, "model.shipments.penalty_cost": 5, "model.vehicles.cost_per_kilometer": 33.53 } } }
Der Solver weist alle Sendungen nur einem Fahrzeug zu und überspringt eine Sendung, obwohl genügend Fahrzeuge verfügbar sind. Das liegt daran, dass die Kosten für den Betrieb zusätzlicher Fahrzeuge zu hoch sind, um sie zu rechtfertigen. Außerdem ist es für kein Fahrzeug kostengünstig, die ausgelassene Lieferung aufgrund der niedrigen Strafkosten abzuschließen.
Trotz der verfügbaren Fahrzeugkapazität kann ein Fahrzeug alle zugewiesenen Sendungen auf die kostengünstigste Weise ausführen. Die Fahrzeuge in der Anfrage haben die Property usedIfRouteIsEmpty
nicht festgelegt (weitere Informationen finden Sie in der Dokumentation zu Vehicle
-Nachrichten (REST, gRPC)). Daher fallen keine Kosten an, wenn sie nicht verwendet werden.
Wenn Sie die Kostenparameter so ändern, dass global kürzere Lösungen anstelle von individuell kürzeren Fahrzeugrouten priorisiert werden, werden mehr Fahrzeuge in die Lösung einbezogen. In der nächsten Beispielanfrage wird Vehicle.costPerHour
durch das globale ShipmentModel.globalDurationCostPerHour
ersetzt. Dabei werden Lösungen priorisiert, die insgesamt eine kürzere Betriebszeit für ein bestimmtes Fahrzeug haben. Die Strafkosten für shipment[1]
werden ebenfalls erhöht, um die Wahrscheinlichkeit zu verringern, dass sie übersprungen wird.
Beispielanfrage mit globalDurationCostPerHour
{ "model": { "globalStartTime": "2023-01-13T16:00:00-08:00", "globalEndTime": "2023-01-14T16:00:00-08:00", "globalDurationCostPerHour": 150.0, "shipments": [ { "deliveries": [ { "arrivalLocation": { "latitude": 37.789456, "longitude": -122.390192 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 100.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.789116, "longitude": -122.395080 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 75.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.795242, "longitude": -122.399347 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 50.0 } ], "vehicles": [ { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerKilometer": 10.0 }, { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerKilometer": 10.0 }, { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerKilometer": 10.0 } ] } }
Das Ergebnis zeigt, dass bei Verwendung des globalen Parameters für die Kosten pro Stunde alle drei Fahrzeuge anstelle nur eines verwendet werden.
Antwort auf die Anfrage mit globalDurationCostPerHour
ansehen
{ "routes": [ { "vehicleStartTime": "2023-01-14T00:00:00Z", "vehicleEndTime": "2023-01-14T00:16:20Z", "visits": [ { "shipmentIndex": 2, "isPickup": true, "startTime": "2023-01-14T00:00:00Z", "detour": "0s" }, { "shipmentIndex": 2, "startTime": "2023-01-14T00:09:19Z", "detour": "0s" } ], "transitions": [ { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-14T00:00:00Z" }, { "travelDuration": "409s", "travelDistanceMeters": 1371, "waitDuration": "0s", "totalDuration": "409s", "startTime": "2023-01-14T00:02:30Z" }, { "travelDuration": "171s", "travelDistanceMeters": 665, "waitDuration": "0s", "totalDuration": "171s", "startTime": "2023-01-14T00:13:29Z" } ], "metrics": { "performedShipmentCount": 1, "travelDuration": "580s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "400s", "totalDuration": "980s", "travelDistanceMeters": 2036 }, "routeCosts": { "model.vehicles.cost_per_kilometer": 20.36 }, "routeTotalCost": 20.36 }, { "vehicleIndex": 1, "vehicleStartTime": "2023-01-14T00:00:00Z", "vehicleEndTime": "2023-01-14T00:18:54Z", "visits": [ { "shipmentIndex": 1, "isPickup": true, "startTime": "2023-01-14T00:00:00Z", "detour": "0s" }, { "shipmentIndex": 1, "startTime": "2023-01-14T00:08:24Z", "detour": "0s" } ], "transitions": [ { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-14T00:00:00Z" }, { "travelDuration": "354s", "travelDistanceMeters": 1192, "waitDuration": "0s", "totalDuration": "354s", "startTime": "2023-01-14T00:02:30Z" }, { "travelDuration": "380s", "travelDistanceMeters": 1190, "waitDuration": "0s", "totalDuration": "380s", "startTime": "2023-01-14T00:12:34Z" } ], "metrics": { "performedShipmentCount": 1, "travelDuration": "734s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "400s", "totalDuration": "1134s", "travelDistanceMeters": 2382 }, "routeCosts": { "model.vehicles.cost_per_kilometer": 23.82 }, "routeTotalCost": 23.82 }, { "vehicleIndex": 2, "vehicleStartTime": "2023-01-14T00:00:00Z", "vehicleEndTime": "2023-01-14T00:16:14Z", "visits": [ { "isPickup": true, "startTime": "2023-01-14T00:00:00Z", "detour": "0s" }, { "startTime": "2023-01-14T00:06:25Z", "detour": "0s" } ], "transitions": [ { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-14T00:00:00Z" }, { "travelDuration": "235s", "travelDistanceMeters": 795, "waitDuration": "0s", "totalDuration": "235s", "startTime": "2023-01-14T00:02:30Z" }, { "travelDuration": "339s", "travelDistanceMeters": 1276, "waitDuration": "0s", "totalDuration": "339s", "startTime": "2023-01-14T00:10:35Z" } ], "metrics": { "performedShipmentCount": 1, "travelDuration": "574s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "400s", "totalDuration": "974s", "travelDistanceMeters": 2071 }, "routeCosts": { "model.vehicles.cost_per_kilometer": 20.71 }, "routeTotalCost": 20.71 } ], "metrics": { "aggregatedRouteMetrics": { "performedShipmentCount": 3, "travelDuration": "1888s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "1200s", "totalDuration": "3088s", "travelDistanceMeters": 6489 }, "usedVehicleCount": 3, "earliestVehicleStartTime": "2023-01-14T00:00:00Z", "latestVehicleEndTime": "2023-01-14T00:18:54Z", "totalCost": 112.14, "costs": { "model.vehicles.cost_per_kilometer": 64.89, "model.global_duration_cost_per_hour": 47.25 } } }
In dieser Antwort sind alle drei Fahrzeuge (gemäß metrics.usedVehicleCount
) in Gebrauch. Jedem Fahrzeug ist eine auszuführende Lieferung zugewiesen. Da Start- und Zielorte sowie costPerKilometer
identisch sind, sind alle drei Fahrzeuge praktisch austauschbar. Es spielt also keine Rolle, welcher Sendung welches Fahrzeug zugewiesen wird.
Durch globalDurationCostPerHour
findet der Optimierer eine Lösung, die insgesamt kürzer ist: Der Unterschied zwischen earliestVehicleStartTime
und latestVehicleEndTime
beträgt nur 18 Minuten und 54 Sekunden, verglichen mit 28 Minuten und 22 Sekunden in der vorherigen Antwort. Der Wert für metrics.costs.model.vehicles.cost_per_kilometer
ist jedoch gestiegen, was auf eine größere zurückgelegte Gesamtstrecke mit den drei verwendeten Fahrzeugen zurückzuführen ist. Hier sehen Sie, wie Sie mit dem Kostenmodell Kompromisse eingehen können:
- Höhere globale Zeitkosten: Die Fahrzeugauslastung wird erhöht, um die Gesamtdurchlaufzeit zu minimieren. Dies geht jedoch zu Lasten der zurückgelegten Strecke und der Fahrtzeit.
- Höhere Kosten für die Fahrzeugnutzung: Die Fahrzeugnutzung und die Fahrzeit können reduziert werden, was jedoch zu einer längeren Gesamtlösung führt.
Der globalDurationCostPerHour
-Wert von 150,0 in diesem Beispiel entspricht dem Dreifachen des costPerHour
-Werts von 50,0 der einzelnen Fahrzeuge aus dem vorherigen Beispiel. Bei diesem globalen Kostenwert wird davon ausgegangen, dass alle drei Fahrzeuge gleichzeitig betrieben werden. In der Praxis spiegeln solche Annahmen jedoch möglicherweise nicht die Realität wider und können sich negativ auf die Ergebnisqualität auswirken.
Wie unter Kostenmodellparameter beschrieben, werden alle Kostenparameter in denselben dimensionslosen Einheiten ausgedrückt, können aber sehr unterschiedliche Bedeutungen haben. In der Regel sollten die Parameterwerte des Kostenmodells so realistisch wie möglich sein, da künstliche Kosten wie in diesem Beispiel dazu führen können, dass die API auf Zielvorhaben optimiert wird, die nicht Ihren Absichten entsprechen.