Beispiel: Kostenorientierte Flottenoptimierung

In diesem Beispiel wird gezeigt, wie die Anzahl der Fahrzeuge, die in einer Route Optimization API-Lösung verwendet werden, je nach Definition der Kostenparameter variieren kann. Durch Anpassen der Fahrzeugkosten können Sie beeinflussen, ob der Optimierer die Anzahl der verwendeten Fahrzeuge oder die Gesamtzeit für die Ausführung aller Lieferungen priorisiert.

Eine vollständige konzeptionelle Übersicht finden Sie unter Kostenmodell.

Szenario 1: Minimierung der Betriebskosten für Fahrzeuge

In diesem Szenario wird gezeigt, wie der Optimierer die Mindestanzahl an Fahrzeugen verwendet, die erforderlich ist, um die kostengünstigste Lösung zu finden, wenn die Kosten an einzelne Fahrzeuge gebunden sind.

Beispielanfrage

Diese Anfrage enthält die folgenden Informationen:

Beispielanfrage mit mehreren Fahrzeugen

{
  "model": {
    "globalStartTime": "2023-01-13T16:00:00-08:00",
    "globalEndTime": "2023-01-14T16:00:00-08:00",
    "shipments": [
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789456,
              "longitude": -122.390192
            },
            "duration": "250s"
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 100.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789116,
              "longitude": -122.395080
            },
            "duration": "250s"
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 5.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.795242,
              "longitude": -122.399347
            },
            "duration": "250s"
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 50.0
      }
    ],
    "vehicles": [
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 50.0,
        "costPerKilometer": 10.0
      },
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 50.0,
        "costPerKilometer": 10.0
      },
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 50.0,
        "costPerKilometer": 10.0
      }
    ]
  }
}
    

Beispielantwort

Obwohl drei Fahrzeuge verfügbar waren, weist der Optimierer alle Sendungen einem einzelnen Fahrzeug zu und überspringt eine Sendung. Das ist die kostengünstigste Lösung, da die Kosten für den Betrieb von mehr als einem Fahrzeug höher sind als die Kosten für die Lieferung von drei Sendungen mit einem Fahrzeug und das Überspringen einer Sendung mit einer geringen Überspringensgebühr.

Antwort auf die Anfrage mit mehreren Fahrzeugen ansehen

{
  "routes": [
    {
      "vehicleStartTime": "2023-01-14T00:00:00Z",
      "vehicleEndTime": "2023-01-14T00:28:22Z",
      "visits": [
        {
          "isPickup": true,
          "startTime": "2023-01-14T00:00:00Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 2,
          "isPickup": true,
          "startTime": "2023-01-14T00:02:30Z",
          "detour": "150s"
        },
        {
          "startTime": "2023-01-14T00:08:55Z",
          "detour": "150s"
        },
        {
          "shipmentIndex": 2,
          "startTime": "2023-01-14T00:21:21Z",
          "detour": "572s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-14T00:00:00Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-14T00:02:30Z"
        },
        {
          "travelDuration": "235s",
          "travelDistanceMeters": 795,
          "waitDuration": "0s",
          "totalDuration": "235s",
          "startTime": "2023-01-14T00:05:00Z"
        },
        {
          "travelDuration": "496s",
          "travelDistanceMeters": 1893,
          "waitDuration": "0s",
          "totalDuration": "496s",
          "startTime": "2023-01-14T00:13:05Z"
        },
        {
          "travelDuration": "171s",
          "travelDistanceMeters": 665,
          "waitDuration": "0s",
          "totalDuration": "171s",
          "startTime": "2023-01-14T00:25:31Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 2,
        "travelDuration": "902s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "800s",
        "totalDuration": "1702s",
        "travelDistanceMeters": 3353
      },
      "routeCosts": {
        "model.vehicles.cost_per_kilometer": 33.53,
        "model.vehicles.cost_per_hour": 23.638888888888889
      },
      "routeTotalCost": 57.168888888888887
    },
    {
      "vehicleIndex": 1
    },
    {
      "vehicleIndex": 2
    }
  ],
  "skippedShipments": [
    {
      "index": 1
    }
  ],
  "metrics": {
    "aggregatedRouteMetrics": {
      "performedShipmentCount": 2,
      "travelDuration": "902s",
      "waitDuration": "0s",
      "delayDuration": "0s",
      "breakDuration": "0s",
      "visitDuration": "800s",
      "totalDuration": "1702s",
      "travelDistanceMeters": 3353
    },
    "usedVehicleCount": 1,
    "earliestVehicleStartTime": "2023-01-14T00:00:00Z",
    "latestVehicleEndTime": "2023-01-14T00:28:22Z",
    "totalCost": 62.168888888888887,
    "costs": {
      "model.vehicles.cost_per_hour": 23.638888888888889,
      "model.shipments.penalty_cost": 5,
      "model.vehicles.cost_per_kilometer": 33.53
    }
  }
}
    

Die Antwort enthält die folgenden relevanten Parameter:

  • Das routes-Array enthält drei Objekte. Die erste Zeile beschreibt die Route für vehicle[0], während die nächsten beiden nur ein vehicleIndex enthalten, was darauf hindeutet, dass vehicle[1] und vehicle[2] nicht verwendet wurden.
  • Das Array skippedShipments zeigt, dass die Sendung mit index: 1, die den niedrigsten penaltyCost von 5,0 hatte, übersprungen wurde.
  • Das Objekt metrics bestätigt, dass usedVehicleCount gleich 1 ist.

Szenario 2: Gesamtlösungszeit minimieren

In diesem Szenario wird gezeigt, wie Sie die Verwendung von mehr Fahrzeugen fördern können, um alle Sendungen schneller zu erledigen. Dazu müssen Sie das Kostenmodell von den einzelnen Fahrzeugbetriebskosten auf globale Kosten umstellen, bei denen die Gesamtdauer der gesamten Lösung berücksichtigt wird.

Beispielanfrage

Diese Anfrage enthält die folgenden Parameteränderungen im Vergleich zum ersten Szenario:

  • Entfernt costPerHour auf jedem Fahrzeug.
  • Fügt globalDurationCostPerHour von 150,0 hinzu. Diese Kosten fallen für die Gesamtzeit an, die vom Start des ersten Fahrzeugs bis zum Ende der Route des letzten Fahrzeugs vergeht.
  • Erhöhen Sie die penaltyCost für shipment[1] auf 75,00, um die Wahrscheinlichkeit zu verringern, dass sie übersprungen wird.

globalDurationCostPerHour-Beispielanfrage

{
  "model": {
    "globalStartTime": "2023-01-13T16:00:00-08:00",
    "globalEndTime": "2023-01-14T16:00:00-08:00",
    "globalDurationCostPerHour": 150.0,
    "shipments": [
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789456,
              "longitude": -122.390192
            },
            "duration": "250s"
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 100.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789116,
              "longitude": -122.395080
            },
            "duration": "250s"
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 75.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.795242,
              "longitude": -122.399347
            },
            "duration": "250s"
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 50.0
      }
    ],
    "vehicles": [
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerKilometer": 10.0
      },
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerKilometer": 10.0
      },
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerKilometer": 10.0
      }
    ]
  }
}
    

Beispielantwort

Mit den neuen globalen Kosten verwendet der Optimierer jetzt alle drei Fahrzeuge, um alle drei Sendungen zu transportieren. Durch das parallele Ausführen der Routen wird die Gesamtdauer des Vorgangs erheblich verkürzt, obwohl die kombinierte Fahrstrecke länger ist.

Antwort auf die Anfrage mit globalDurationCostPerHour ansehen

{
  "routes": [
    {
      "vehicleStartTime": "2023-01-14T00:00:00Z",
      "vehicleEndTime": "2023-01-14T00:16:20Z",
      "visits": [
        {
          "shipmentIndex": 2,
          "isPickup": true,
          "startTime": "2023-01-14T00:00:00Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 2,
          "startTime": "2023-01-14T00:09:19Z",
          "detour": "0s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-14T00:00:00Z"
        },
        {
          "travelDuration": "409s",
          "travelDistanceMeters": 1371,
          "waitDuration": "0s",
          "totalDuration": "409s",
          "startTime": "2023-01-14T00:02:30Z"
        },
        {
          "travelDuration": "171s",
          "travelDistanceMeters": 665,
          "waitDuration": "0s",
          "totalDuration": "171s",
          "startTime": "2023-01-14T00:13:29Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 1,
        "travelDuration": "580s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "400s",
        "totalDuration": "980s",
        "travelDistanceMeters": 2036
      },
      "routeCosts": {
        "model.vehicles.cost_per_kilometer": 20.36
      },
      "routeTotalCost": 20.36
    },
    {
      "vehicleIndex": 1,
      "vehicleStartTime": "2023-01-14T00:00:00Z",
      "vehicleEndTime": "2023-01-14T00:18:54Z",
      "visits": [
        {
          "shipmentIndex": 1,
          "isPickup": true,
          "startTime": "2023-01-14T00:00:00Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 1,
          "startTime": "2023-01-14T00:08:24Z",
          "detour": "0s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-14T00:00:00Z"
        },
        {
          "travelDuration": "354s",
          "travelDistanceMeters": 1192,
          "waitDuration": "0s",
          "totalDuration": "354s",
          "startTime": "2023-01-14T00:02:30Z"
        },
        {
          "travelDuration": "380s",
          "travelDistanceMeters": 1190,
          "waitDuration": "0s",
          "totalDuration": "380s",
          "startTime": "2023-01-14T00:12:34Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 1,
        "travelDuration": "734s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "400s",
        "totalDuration": "1134s",
        "travelDistanceMeters": 2382
      },
      "routeCosts": {
        "model.vehicles.cost_per_kilometer": 23.82
      },
      "routeTotalCost": 23.82
    },
    {
      "vehicleIndex": 2,
      "vehicleStartTime": "2023-01-14T00:00:00Z",
      "vehicleEndTime": "2023-01-14T00:16:14Z",
      "visits": [
        {
          "isPickup": true,
          "startTime": "2023-01-14T00:00:00Z",
          "detour": "0s"
        },
        {
          "startTime": "2023-01-14T00:06:25Z",
          "detour": "0s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-14T00:00:00Z"
        },
        {
          "travelDuration": "235s",
          "travelDistanceMeters": 795,
          "waitDuration": "0s",
          "totalDuration": "235s",
          "startTime": "2023-01-14T00:02:30Z"
        },
        {
          "travelDuration": "339s",
          "travelDistanceMeters": 1276,
          "waitDuration": "0s",
          "totalDuration": "339s",
          "startTime": "2023-01-14T00:10:35Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 1,
        "travelDuration": "574s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "400s",
        "totalDuration": "974s",
        "travelDistanceMeters": 2071
      },
      "routeCosts": {
        "model.vehicles.cost_per_kilometer": 20.71
      },
      "routeTotalCost": 20.71
    }
  ],
  "metrics": {
    "aggregatedRouteMetrics": {
      "performedShipmentCount": 3,
      "travelDuration": "1888s",
      "waitDuration": "0s",
      "delayDuration": "0s",
      "breakDuration": "0s",
      "visitDuration": "1200s",
      "totalDuration": "3088s",
      "travelDistanceMeters": 6489
    },
    "usedVehicleCount": 3,
    "earliestVehicleStartTime": "2023-01-14T00:00:00Z",
    "latestVehicleEndTime": "2023-01-14T00:18:54Z",
    "totalCost": 112.14,
    "costs": {
      "model.vehicles.cost_per_kilometer": 64.89,
      "model.global_duration_cost_per_hour": 47.25
    }
  }
}
    

Die Antwort enthält die folgenden relevanten Felder: