-
Distribuzione delle foreste di mangrovie a livello mondiale, versione 1 (2000)
Il database è stato preparato utilizzando i dati del satellite Landsat dell'anno 2000. Più di 1000 scene Landsat ottenute dall'EROS (Earth Resources Observation and Science Center) del USGS sono state classificate utilizzando tecniche ibride di classificazione delle immagini digitali supervisionate e non supervisionate. Questo database è il primo e più … annuali ciesin biomassa forestale globali derivate da Landsat mangrovia -
JRC Yearly Water Classification History, v1.4
Questo set di dati contiene mappe della posizione e della distribuzione temporale delle acque superficiali dal 1984 al 2021 e fornisce statistiche sull'estensione e sulla variazione di queste superfici d'acqua. Per ulteriori informazioni, consulta l'articolo del giornale associato: High-resolution mapping of global surface water and its … annuali geofisiche google history jrc landsat-derived -
MOD44B.061 Campi continui di vegetazione di Terra a livello globale annuali a 250 m
Il prodotto Terra MODIS Vegetation Continuous Fields (VCF) è una rappresentazione a livello di subpixel delle stime della copertura della vegetazione superficiale a livello globale. Progettato per rappresentare continuamente la superficie terrestre della Terra come proporzione di tratti di vegetazione di base, fornisce una gradazione di tre componenti della copertura del suolo: percentuale di copertura arborea, percentuale … annuale geofisico globale uso del suolo-copertura del suolo modis nasa -
Open Buildings Temporal V1
Il set di dati temporale Open Buildings 2.5D contiene dati sulla presenza di edifici, sul conteggio frazionato degli edifici e sulle altezze degli edifici con una risoluzione spaziale effettiva1 di 4 m (i raster sono forniti con una risoluzione di 0, 5 m) con una cadenza annuale dal 2016 al 2023. È prodotto da immagini open source a bassa risoluzione della … africa annual asia built-up height open-buildings -
Satellite Embedding versione 1
Il set di dati di Google Satellite Embedding è una raccolta globale di embedding geospaziali appresi, pronta per l'analisi. Ogni pixel di 10 metri in questo set di dati è una rappresentazione a 64 dimensioni, o "vettore di embedding", che codifica le traiettorie temporali delle condizioni della superficie in quel pixel e nelle sue vicinanze, misurate da vari sistemi di osservazione della Terra … annuali a livello mondiale di Google derivate da Landsat immagini satellitari derivate da Sentinel-1 -
VIIRS Nighttime Day/Night Annual Band Composites V2.1
Il set di dati annuale globale delle luci notturne del VIIRS è una serie temporale prodotta da griglie mensili di irraggiamento medio senza nuvole che vanno dal 2013 al 2021. I dati relativi al 2022 sono disponibili nel set di dati NOAA/VIIRS/DNB/ANNUAL_V22. Un primo passaggio di filtri ha rimosso i pixel illuminati dal sole, dalla luna e dalle nuvole, generando composizioni approssimative che … annual dnb eog lights nighttime noaa -
VIIRS Nighttime Day/Night Annual Band Composites V2.2
Il set di dati annuale globale delle luci notturne del VIIRS è una serie temporale prodotta da griglie mensili di irraggiamento medio senza nuvole per il 2022. I dati relativi agli anni precedenti sono disponibili nel set di dati NOAA/VIIRS/DNB/ANNUAL_V21. Un primo passaggio di filtri ha rimosso i pixel illuminati dal sole, dalla luna e dalle nuvole, generando composizioni approssimative che contengono … annual dnb eog lights nighttime noaa
Datasets tagged annual in Earth Engine
[null,null,[],[[["\u003cp\u003eThe Open Buildings Temporal V1 dataset provides annual data (2016-2023) on building presence, counts, and heights across Africa and Asia.\u003c/p\u003e\n"],["\u003cp\u003eThe JRC Yearly Water Classification History, v1.4 dataset offers annual maps and statistics on global surface water distribution and change from 1984 to 2021.\u003c/p\u003e\n"],["\u003cp\u003eThe Global Mangrove Forests Distribution, v1 (2000) dataset presents a global mangrove forest distribution map derived from Landsat satellite data from the year 2000.\u003c/p\u003e\n"],["\u003cp\u003eThe MOD44B.006 Terra Vegetation Continuous Fields Yearly Global 250m dataset provides yearly global vegetation cover estimates, including tree cover percentages.\u003c/p\u003e\n"],["\u003cp\u003eThe VIIRS Nighttime Day/Night Annual Band Composites V2.1 and V2.2 datasets offer annual global nighttime lights data, with V2.1 spanning 2013 to 2021 and V2.2 covering 2022.\u003c/p\u003e\n"]]],["The datasets provide annual global information on various Earth features. The Open Buildings dataset offers building presence, counts, and heights from 2016-2023. JRC data maps surface water distribution and changes from 1984-2021. Another dataset, based on data from 2000, details mangrove forest distribution. MODIS data provides continuous vegetation cover estimates, including tree cover percentages. Lastly, VIIRS data sets map annual nighttime light composites from 2013-2022, based on cloud-free average radiance grids.\n"],null,["# Datasets tagged annual in Earth Engine\n\n-\n\n |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### Global Mangrove Forests Distribution, v1 (2000)](/earth-engine/datasets/catalog/LANDSAT_MANGROVE_FORESTS) |\n | The database was prepared using Landsat satellite data from the year 2000. More than 1,000 Landsat scenes obtained from the USGS Earth Resources Observation and Science Center (EROS) were classified using hybrid supervised and unsupervised digital image classification techniques. This database is the first, most ... |\n | [annual](/earth-engine/datasets/tags/annual) [ciesin](/earth-engine/datasets/tags/ciesin) [forest-biomass](/earth-engine/datasets/tags/forest-biomass) [global](/earth-engine/datasets/tags/global) [landsat-derived](/earth-engine/datasets/tags/landsat-derived) [mangrove](/earth-engine/datasets/tags/mangrove) |\n\n-\n\n |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### JRC Yearly Water Classification History, v1.4](/earth-engine/datasets/catalog/JRC_GSW1_4_YearlyHistory) |\n | This dataset contains maps of the location and temporal distribution of surface water from 1984 to 2021 and provides statistics on the extent and change of those water surfaces. For more information see the associated journal article: High-resolution mapping of global surface water and its ... |\n | [annual](/earth-engine/datasets/tags/annual) [geophysical](/earth-engine/datasets/tags/geophysical) [google](/earth-engine/datasets/tags/google) [history](/earth-engine/datasets/tags/history) [jrc](/earth-engine/datasets/tags/jrc) [landsat-derived](/earth-engine/datasets/tags/landsat-derived) |\n\n-\n\n |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### MOD44B.061 Terra Vegetation Continuous Fields Yearly Global 250m](/earth-engine/datasets/catalog/MODIS_061_MOD44B) |\n | The Terra MODIS Vegetation Continuous Fields (VCF) product is a sub-pixel-level representation of surface vegetation cover estimates globally. Designed to continuously represent Earth's terrestrial surface as a proportion of basic vegetation traits, it provides a gradation of three surface cover components: percent tree cover, percent ... |\n | [annual](/earth-engine/datasets/tags/annual) [geophysical](/earth-engine/datasets/tags/geophysical) [global](/earth-engine/datasets/tags/global) [landuse-landcover](/earth-engine/datasets/tags/landuse-landcover) [modis](/earth-engine/datasets/tags/modis) [nasa](/earth-engine/datasets/tags/nasa) |\n\n-\n\n |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### Open Buildings Temporal V1](/earth-engine/datasets/catalog/GOOGLE_Research_open-buildings-temporal_v1) |\n | The Open Buildings 2.5D Temporal Dataset contains data about building presence, fractional building counts, and building heights at an effective1 spatial resolution of 4m (rasters are provided at 0.5m resolution) at an annual cadence from 2016-2023. It is produced from open-source, low-resolution imagery from the ... |\n | [africa](/earth-engine/datasets/tags/africa) [annual](/earth-engine/datasets/tags/annual) [asia](/earth-engine/datasets/tags/asia) [built-up](/earth-engine/datasets/tags/built-up) [height](/earth-engine/datasets/tags/height) [open-buildings](/earth-engine/datasets/tags/open-buildings) |\n\n-\n\n |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### Satellite Embedding V1](/earth-engine/datasets/catalog/GOOGLE_SATELLITE_EMBEDDING_V1_ANNUAL) |\n | The Google Satellite Embedding dataset is a global, analysis-ready collection of learned geospatial embeddings. Each 10-meter pixel in this dataset is a 64-dimensional representation, or \"embedding vector,\" that encodes temporal trajectories of surface conditions at and around that pixel as measured by various Earth observation ... |\n | [annual](/earth-engine/datasets/tags/annual) [global](/earth-engine/datasets/tags/global) [google](/earth-engine/datasets/tags/google) [landsat-derived](/earth-engine/datasets/tags/landsat-derived) [satellite-imagery](/earth-engine/datasets/tags/satellite-imagery) [sentinel1-derived](/earth-engine/datasets/tags/sentinel1-derived) |\n\n-\n\n |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### VIIRS Nighttime Day/Night Annual Band Composites V2.1](/earth-engine/datasets/catalog/NOAA_VIIRS_DNB_ANNUAL_V21) |\n | Annual global VIIRS nighttime lights dataset is a time series produced from monthly cloud-free average radiance grids spanning 2013 to 2021. Data for 2022 are available in the NOAA/VIIRS/DNB/ANNUAL_V22 dataset. An initial filtering step removed sunlit, moonlit and cloudy pixels, leading to rough composites that ... |\n | [annual](/earth-engine/datasets/tags/annual) [dnb](/earth-engine/datasets/tags/dnb) [eog](/earth-engine/datasets/tags/eog) [lights](/earth-engine/datasets/tags/lights) [nighttime](/earth-engine/datasets/tags/nighttime) [noaa](/earth-engine/datasets/tags/noaa) |\n\n-\n\n |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n | [### VIIRS Nighttime Day/Night Annual Band Composites V2.2](/earth-engine/datasets/catalog/NOAA_VIIRS_DNB_ANNUAL_V22) |\n | Annual global VIIRS nighttime lights dataset is a time series produced from monthly cloud-free average radiance grids for 2022. Data for earlier years are available in the NOAA/VIIRS/DNB/ANNUAL_V21 dataset. An initial filtering step removed sunlit, moonlit and cloudy pixels, leading to rough composites that contains ... |\n | [annual](/earth-engine/datasets/tags/annual) [dnb](/earth-engine/datasets/tags/dnb) [eog](/earth-engine/datasets/tags/eog) [lights](/earth-engine/datasets/tags/lights) [nighttime](/earth-engine/datasets/tags/nighttime) [noaa](/earth-engine/datasets/tags/noaa) |"]]