Equità: esercizio di programmazione
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
L'esercizio seguente dimostra come verificare i set di dati in modo equilibrato
e come impiegare strategie di correzione dei bias per affrontare l'equità
problemi:
Gli esercizi di programmazione vengono eseguiti direttamente nel browser (senza configurazione)
obbligatorio!) utilizzando Colaboratory
completamente gestita. Colaboratory è supportato sulla maggior parte dei principali browser ed è
accuratamente testati sulle versioni desktop di Chrome e Firefox.
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2024-08-13 UTC.
[null,null,["Ultimo aggiornamento 2024-08-13 UTC."],[[["\u003cp\u003eThis exercise demonstrates how to audit data sets for fairness and apply bias-remediation strategies.\u003c/p\u003e\n"],["\u003cp\u003eThe programming exercises are run directly in your browser using the Colaboratory platform with no setup required.\u003c/p\u003e\n"],["\u003cp\u003eColaboratory is supported on most major browsers and is most thoroughly tested on desktop versions of Chrome and Firefox.\u003c/p\u003e\n"],["\u003cp\u003eUsers can access a Help Center for support with machine learning education.\u003c/p\u003e\n"]]],[],null,["# Fairness: Programming exercise\n\nThe following exercise demonstrates how to audit data sets with fairness in\nmind, and how to employ bias-remediation strategies to address fairness\nissues: \n[Open fairness exercise](https://colab.research.google.com/github/google/eng-edu/blob/main/ml/cc/exercises/fairness_income.ipynb?utm_source=mlcc&utm_campaign=colab-external&utm_medium=referral&utm_content=fairness)\n\nProgramming exercises run directly in your browser (no setup\nrequired!) using the [Colaboratory](https://colab.research.google.com)\nplatform. Colaboratory is supported on most major browsers, and is most\nthoroughly tested on desktop versions of Chrome and Firefox. \n[Help Center](https://support.google.com/machinelearningeducation)"]]