[null,null,["最后更新时间 (UTC):2024-11-08。"],[[["Backpropagation is the primary training algorithm for neural networks, enabling gradient descent for multi-layer networks and often handled automatically by machine learning libraries."],["Vanishing gradients occur when gradients in lower layers become very small, hindering their training, and can be mitigated by using ReLU activation function."],["Exploding gradients happen when large weights cause excessively large gradients, disrupting convergence, and can be addressed with batch normalization or lowering the learning rate."],["Dead ReLU units emerge when a ReLU unit's output gets stuck at 0, halting gradient flow, and can be avoided by lowering the learning rate or using ReLU variants like LeakyReLU."],["Dropout regularization is a technique to prevent overfitting by randomly dropping unit activations during training, with higher dropout rates indicating stronger regularization."]]],[]]