数值数据:编程练习
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
请花些时间完成以下练习,以练习您在处理数值数据的第一步中学到的内容。
- 获取数据集的统计信息,该部分介绍了如何查找包含明显异常值的列:
- 查找数据集中有缺陷的部分,该课程将引导您通过直观和数学方法查找数据集中隐藏的有缺陷值:
编程练习会直接在浏览器中运行(无需设置!),使用 Colaboratory 平台。大多数主流浏览器都支持 Colaboratory,并且在桌面版 Chrome 和 Firefox 上进行了最全面的测试。
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2025-01-29。
[null,null,["最后更新时间 (UTC):2025-01-29。"],[[["\u003cp\u003eThis page provides programming exercises focusing on practicing numerical data analysis skills learned in a previous lesson.\u003c/p\u003e\n"],["\u003cp\u003eTwo Colab exercises are available: one on calculating descriptive statistics and identifying outliers, and another on detecting and handling bad data values in a dataset.\u003c/p\u003e\n"],["\u003cp\u003eThe exercises are browser-based and require no setup, utilizing the Colaboratory platform, primarily supported on Chrome and Firefox desktop versions.\u003c/p\u003e\n"]]],[],null,["# Numerical data: Programming exercises\n\nTake some time to complete the following exercises to practice what you've\nlearned in\n[First steps with numerical data](/machine-learning/crash-course/numerical-data/first-steps).\n\n- **Get statistics on a dataset** , which shows you how to find columns containing blatant outliers: \n [Open math statistics exercise](https://colab.research.google.com/github/google/eng-edu/blob/main/ml/cc/exercises/numerical_data_stats.ipynb?utm_source=mlcc&utm_campaign=colab-external&utm_medium=referral&utm_content=numerical_data_stats)\n- **Find the bad part of the dataset** , which guides you through visual and mathematical ways to find hidden *bad* values in a dataset: \n [Open \"bad part\" dataset exercise](https://colab.research.google.com/github/google/eng-edu/blob/main/ml/cc/exercises/numerical_data_bad_values.ipynb?utm_source=mlcc&utm_campaign=colab-external&utm_medium=referral&utm_content=numerical_data_bad_values)\n\nProgramming exercises run directly in your browser (no setup\nrequired!) using the [Colaboratory](https://colab.research.google.com)\nplatform. Colaboratory is supported on most major browsers, and is most\nthoroughly tested on desktop versions of Chrome and Firefox. \n[Help Center](https://support.google.com/machinelearningeducation)"]]