[null,null,["最后更新时间 (UTC):2024-08-13。"],[[["Like sorting good apples from bad, ML engineers spend significant time cleaning data by removing or fixing bad examples to improve dataset quality."],["Common data problems include omitted values, duplicate examples, out-of-range values, and incorrect labels, which can negatively impact model performance."],["You can use programs or scripts to identify and handle data issues such as omitted values, duplicates, and out-of-range feature values by removing or correcting them."],["When multiple individuals label data, it's important to check for consistency and identify potential biases to ensure label quality."],["Addressing data quality issues before training a model leads to better model accuracy and overall performance."]]],[]]