Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
Để đánh giá một mô hình học máy (ML) một cách có trách nhiệm, bạn cần làm nhiều việc hơn là chỉ tính toán các chỉ số tổn thất tổng thể. Trước khi đưa mô hình vào hoạt động sản xuất, bạn cần kiểm tra dữ liệu huấn luyện và đánh giá các dự đoán về sai số.
Mô-đun này xem xét các loại thiên kiến của con người có thể xuất hiện trong dữ liệu huấn luyện. Sau đó, công cụ này cung cấp các chiến lược để xác định và giảm thiểu các vấn đề đó, rồi đánh giá hiệu suất của mô hình một cách công bằng.
[null,null,["Cập nhật lần gần đây nhất: 2025-07-27 UTC."],[[["\u003cp\u003eThis module focuses on identifying and mitigating human biases that can negatively impact machine learning models.\u003c/p\u003e\n"],["\u003cp\u003eYou'll learn how to proactively examine data for potential bias before model training and how to evaluate your model's predictions for fairness.\u003c/p\u003e\n"],["\u003cp\u003eThe module explores various types of human biases that can unintentionally be replicated by machine learning algorithms, emphasizing responsible AI development.\u003c/p\u003e\n"],["\u003cp\u003eIt builds upon foundational machine learning knowledge, including linear and logistic regression, classification, and handling numerical and categorical data.\u003c/p\u003e\n"]]],[],null,["# Fairness\n\n| **Estimated module length:** 110 minutes\n\nEvaluating a machine learning model (ML) responsibly requires doing more than\njust calculating overall loss metrics. Before putting a model into production,\nit's critical to audit training data and evaluate predictions for\n[bias](/machine-learning/glossary#bias-ethicsfairness).\n\nThis module looks at different types of human biases that can manifest in\ntraining data. It then provides strategies to identify and mitigate them,\nand then evaluate model performance with fairness in mind.\n| **Learning objectives**\n|\n| - Become aware of common human biases that can inadvertently be reproduced by ML algorithms.\n| - Proactively explore data to identify sources of bias before training a model.\n| - Evaluate model predictions for bias.\n| **Prerequisites:**\n|\n| This module assumes you are familiar with the concepts covered in the\n| following modules:\n|\n| - [Introduction to Machine Learning](/machine-learning/intro-to-ml)\n| - [Linear regression](/machine-learning/crash-course/linear-regression)\n| - [Logistic regression](/machine-learning/crash-course/logistic-regression)\n| - [Classification](/machine-learning/crash-course/classification)\n| - [Working with numerical data](/machine-learning/crash-course/numerical-data)\n| - [Working with categorical data](/machine-learning/crash-course/categorical-data)\n- [Datasets, generalization, and overfitting](/machine-learning/crash-course/overfitting) \n| **Key terms:**\n|\n| - [Bias (ethics/fairness)](/machine-learning/glossary#bias-ethicsfairness)\n- [Model](/machine-learning/glossary#model) \n[Help Center](https://support.google.com/machinelearningeducation)"]]