Числовые данные: упражнения по программированию
Оптимизируйте свои подборки
Сохраняйте и классифицируйте контент в соответствии со своими настройками.
Уделите некоторое время выполнению следующих упражнений, чтобы попрактиковаться в том, что вы узнали из раздела «Первые шаги с числовыми данными» .
- Получите статистику по набору данных , которая покажет вам, как найти столбцы, содержащие явные выбросы:
- Найдите плохую часть набора данных . Здесь вы найдете визуальные и математические способы поиска скрытых плохих значений в наборе данных:
Упражнения по программированию выполняются прямо в вашем браузере (настройка не требуется!) с использованием платформы Colaboratory . Colaboratory поддерживается в большинстве основных браузеров и наиболее тщательно протестирован в настольных версиях Chrome и Firefox.
Если не указано иное, контент на этой странице предоставляется по лицензии Creative Commons "С указанием авторства 4.0", а примеры кода – по лицензии Apache 2.0. Подробнее об этом написано в правилах сайта. Java – это зарегистрированный товарный знак корпорации Oracle и ее аффилированных лиц.
Последнее обновление: 2025-01-29 UTC.
[null,null,["Последнее обновление: 2025-01-29 UTC."],[[["\u003cp\u003eThis page provides programming exercises focusing on practicing numerical data analysis skills learned in a previous lesson.\u003c/p\u003e\n"],["\u003cp\u003eTwo Colab exercises are available: one on calculating descriptive statistics and identifying outliers, and another on detecting and handling bad data values in a dataset.\u003c/p\u003e\n"],["\u003cp\u003eThe exercises are browser-based and require no setup, utilizing the Colaboratory platform, primarily supported on Chrome and Firefox desktop versions.\u003c/p\u003e\n"]]],[],null,["# Numerical data: Programming exercises\n\nTake some time to complete the following exercises to practice what you've\nlearned in\n[First steps with numerical data](/machine-learning/crash-course/numerical-data/first-steps).\n\n- **Get statistics on a dataset** , which shows you how to find columns containing blatant outliers: \n [Open math statistics exercise](https://colab.research.google.com/github/google/eng-edu/blob/main/ml/cc/exercises/numerical_data_stats.ipynb?utm_source=mlcc&utm_campaign=colab-external&utm_medium=referral&utm_content=numerical_data_stats)\n- **Find the bad part of the dataset** , which guides you through visual and mathematical ways to find hidden *bad* values in a dataset: \n [Open \"bad part\" dataset exercise](https://colab.research.google.com/github/google/eng-edu/blob/main/ml/cc/exercises/numerical_data_bad_values.ipynb?utm_source=mlcc&utm_campaign=colab-external&utm_medium=referral&utm_content=numerical_data_bad_values)\n\nProgramming exercises run directly in your browser (no setup\nrequired!) using the [Colaboratory](https://colab.research.google.com)\nplatform. Colaboratory is supported on most major browsers, and is most\nthoroughly tested on desktop versions of Chrome and Firefox. \n[Help Center](https://support.google.com/machinelearningeducation)"]]