Наборы данных, обобщение и переобучение,Наборы данных, обобщение и переобучение
Введение
Этот модуль начинается с наводящего вопроса. Выберите один из следующих ответов:
Если бы вам пришлось уделить приоритетное внимание улучшению одной из следующих областей вашего проекта по машинному обучению, какая из них оказала бы наибольшее влияние?
Улучшение качества вашего набора данных
Данные превосходят все. Качество и размер набора данных имеют гораздо большее значение, чем какой блестящий алгоритм вы используете для построения своей модели.
Применение более умной функции потерь для обучения вашей модели
Да, лучшая функция потерь может помочь модели обучаться быстрее, но она все равно уступает другому элементу в этом списке.
И вот еще более наводящий вопрос:
Угадайте: сколько времени вы обычно тратите в своем проекте машинного обучения на подготовку и преобразование данных?
Более половины времени проекта
Да, специалисты по машинному обучению тратят большую часть своего времени на создание наборов данных и разработку функций.
Менее половины времени проекта
Планируйте больше! Обычно 80% времени в проекте машинного обучения тратится на создание наборов данных и преобразование данных.
В этом модуле вы узнаете больше о характеристиках наборов данных машинного обучения и о том, как подготовить данные, чтобы обеспечить высококачественные результаты при обучении и оценке вашей модели.
[null,null,["Последнее обновление: 2024-11-07 UTC."],[[["This module emphasizes the critical role of data quality in machine learning projects, highlighting that it significantly impacts model performance more than algorithm choice."],["Machine learning practitioners typically dedicate a substantial portion of their project time (around 80%) to data preparation and transformation, including tasks like dataset construction and feature engineering."],["The module covers key concepts in data preparation, such as identifying data characteristics, handling unreliable data, understanding data labels, and splitting datasets for training and evaluation."],["Learners will gain insights into techniques for improving data quality, mitigating issues like overfitting, and interpreting loss curves to assess model performance."],["This module builds upon foundational machine learning concepts, assuming familiarity with topics like linear regression, numerical and categorical data handling, and basic machine learning principles."]]],[]]