Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Bisher haben wir uns in diesem Kurs auf die Erstellung von Modellen für maschinelles Lernen (ML) konzentriert.
Wie Abbildung 1 jedoch zeigt, sind reale Produktions-ML-Systeme große Ökosysteme und das Modell ist nur ein einzelner, relativ kleiner Teil.
Abbildung 1: Ein reales ML-System für die Produktion besteht aus vielen Komponenten.
Im Mittelpunkt eines realen Produktionssystems für maschinelles Lernen steht das ML
Modellcode, stellt aber häufig nur 5% oder weniger der gesamten Codebasis in
System. Das ist kein Fehldruck, ist es deutlich weniger, als Sie
zu erwarten ist. Beachten Sie, dass ein ML-Produktionssystem erhebliche Ressourcen
den Eingabedaten hinzu: Sie sammeln,
verifizieren und Funktionen daraus extrahieren.
[null,null,["Zuletzt aktualisiert: 2025-07-27 (UTC)."],[[["\u003cp\u003eThis module explores the broader ecosystem of a production ML system, emphasizing that the model itself is only a small part of the overall system.\u003c/p\u003e\n"],["\u003cp\u003eYou will learn to choose the appropriate training and inference paradigms (static or dynamic) based on your specific needs.\u003c/p\u003e\n"],["\u003cp\u003eThe module covers key aspects of production ML systems, including testing, identifying potential flaws, and monitoring the system's components.\u003c/p\u003e\n"],["\u003cp\u003eAs a prerequisite, familiarity with foundational machine learning concepts, including linear regression, data types, and overfitting, is assumed.\u003c/p\u003e\n"],["\u003cp\u003eBuilding upon previous modules, this content shifts focus to the practical aspects of deploying and maintaining ML models in real-world scenarios.\u003c/p\u003e\n"]]],[],null,["# Production ML systems\n\n| **Estimated module length:** 70 minutes\n| **Learning objectives**\n|\n| - Appreciate the breadth of components in a production ML system.\n| - Pick the ideal training paradigm (static versus dynamic).\n| - Pick the ideal inference paradigm (static versus dynamic).\n| - Test your machine learning deployment.\n| - Ask the right questions about your production ML system.\n| - Determine flaws in real-world ML models.\n| - Monitor the components in a production ML system.\n| **Prerequisites:**\n|\n| This module assumes you are familiar with the concepts covered in the\n| following modules:\n|\n| - [Introduction to Machine Learning](/machine-learning/intro-to-ml)\n| - [Linear regression](/machine-learning/crash-course/linear-regression)\n| - [Working with numerical data](/machine-learning/crash-course/numerical-data)\n| - [Working with categorical data](/machine-learning/crash-course/categorical-data)\n| - [Datasets, generalization, and overfitting](/machine-learning/crash-course/overfitting)\n\nSo far, this course has focused on building machine learning (ML) models.\nHowever, as Figure 1 suggests, real-world production ML systems are large\necosystems and the model is just a single, relatively small part.\n**Figure 1.** A real-world production ML system comprises many components.\n\nAt the heart of a real-world machine learning production system is the ML\nmodel code, but it often represents only 5% or less of the total codebase in\nthe system. That's not a misprint; it's significantly less than you might\nexpect. Notice that an ML production system devotes considerable resources\nto the input data: collecting it, verifying it, and extracting features from it. \n[Help Center](https://support.google.com/machinelearningeducation)"]]