Do rozpoznawania i dekodowania kodów kreskowych możesz używać pakietu ML Kit.
Funkcja | Niegrupowane | Łączenie w pakiety |
---|---|---|
Implementacja | Model jest pobierany dynamicznie przez Usługi Google Play. | Model jest statycznie połączony z aplikacją w momencie kompilacji. |
Rozmiar aplikacji | Zwiększenie rozmiaru o około 200 KB. | Zwiększenie rozmiaru o około 2,4 MB. |
Czas inicjowania | Przed jego pierwszym użyciem konieczne może być poczekać na pobranie modelu. | Model jest dostępny od razu. |
Wypróbuj
- Wypróbuj przykładową aplikację, aby: zobaczysz przykład użycia tego interfejsu API.
- Zobacz prezentację stylu Material Design , by kompleksowo wdrożyć ten interfejs API.
Zanim zaczniesz
W pliku
build.gradle
na poziomie projektu uwzględnij parametr Google Repozytorium Maven w sekcjachbuildscript
iallprojects
.Dodaj zależności bibliotek ML Kit na Androida do biblioteki modułu pliku Gradle na poziomie aplikacji, który zwykle ma wartość
app/build.gradle
. Wybierz jedną z opcji: następujące zależności w zależności od potrzeb:Aby połączyć model z aplikacją:
dependencies { // ... // Use this dependency to bundle the model with your app implementation 'com.google.mlkit:barcode-scanning:17.3.0' }
Aby używać modelu w Usługach Google Play:
dependencies { // ... // Use this dependency to use the dynamically downloaded model in Google Play Services implementation 'com.google.android.gms:play-services-mlkit-barcode-scanning:18.3.1' }
Jeśli zdecydujesz się używać modelu w Usługach Google Play, możesz skonfigurować aplikacja automatycznie pobiera model na urządzenie, ze Sklepu Play. Aby to zrobić, dodaj następującą deklarację do plik
AndroidManifest.xml
Twojej aplikacji:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="barcode" > <!-- To use multiple models: android:value="barcode,model2,model3" --> </application>
Możesz też bezpośrednio sprawdzić dostępność modelu i poprosić o pobranie go Interfejs ModuleInstallClient API Usług Google Play.
Jeśli nie włączysz pobierania modelu w czasie instalacji lub nie poprosisz o pobieranie dla pełnoletnich, model zostanie pobrany przy pierwszym uruchomieniu skanera. Twoje prośby przed zakończeniem pobierania nie przyniosą żadnych wyników.
Wytyczne dotyczące obrazu wejściowego
-
Aby ML Kit mógł dokładnie odczytywać kody kreskowe, obrazy wejściowe muszą zawierać również kody kreskowe, które są reprezentowane przez wystarczającą ilość danych pikseli.
Konkretne wymagania dotyczące danych pikseli zależą od typu i ilości zakodowanych w nim danych, ponieważ wiele kodów kreskowych obsługują ładunek o zmiennym rozmiarze. Ogólnie rzecz biorąc, najmniej istotne musi mieć co najmniej 2 piksele szerokości, a w przypadku Dwuwymiarowe kody o wysokości 2 pikseli.
Na przykład kody kreskowe EAN-13 składają się z kresek i spacji oznaczonych znakiem 1, 2, 3 lub 4 jednostki szerokości, więc na obrazie z kodem kreskowym EAN-13 powinny być słupki i o szerokości co najmniej 2, 4, 6 lub 8 pikseli. Ponieważ kod EAN-13 Kod kreskowy ma łącznie 95 jednostek szerokości, a kod kreskowy powinien mieć co najmniej 190 jednostek. pikseli szerokości ekranu.
Formaty o większej gęstości, np. PDF417, wymagają większych wymiarów w pikselach ML Kit. Na przykład kod PDF417 może mieć maksymalnie 34 „słowa” o szerokości 17 jednostek w jednym wierszu, czyli przynajmniej 1156 pikseli szerokości.
-
Słaba ostrość obrazu może mieć wpływ na dokładność skanowania. Jeśli aplikacja nie otrzymuje akceptowalne, poproś użytkownika o ponowne przechwycenie obrazu.
-
W typowych zastosowaniach zaleca się podanie wyższej wartości obrazu o rozdzielczości, np. 1280 x 720 lub 1920 x 1080, który tworzy kody kreskowe i można je zeskanować z większej odległości od aparatu.
Jednak w aplikacjach, w których opóźnienia są kluczowe, można poprawić dzięki możliwości robienia zdjęć w niższej rozdzielczości, ale wymagając kod kreskowy stanowi większość zdjęcia wejściowego. Zobacz też Wskazówki, jak zwiększyć skuteczność w czasie rzeczywistym.
1. Konfigurowanie skanera kodów kreskowych
Wiedząc, jakie formaty kodu kreskowego spodziewasz się odczytać, możesz zwiększyć szybkość detektora kodów kreskowych, konfigurując go tak, aby wykrywał tylko te formaty.Na przykład, aby wykrywać tylko kody Aztec i kody QR, utwórz
BarcodeScannerOptions
jak w tym przykładzie:
Kotlin
val options = BarcodeScannerOptions.Builder() .setBarcodeFormats( Barcode.FORMAT_QR_CODE, Barcode.FORMAT_AZTEC) .build()
Java
BarcodeScannerOptions options = new BarcodeScannerOptions.Builder() .setBarcodeFormats( Barcode.FORMAT_QR_CODE, Barcode.FORMAT_AZTEC) .build();
Obsługiwane formaty:
- Kod 128 (
FORMAT_CODE_128
) - Kod 39 (
FORMAT_CODE_39
) - Kod 93 (
FORMAT_CODE_93
) - Codabar (
FORMAT_CODABAR
) - EAN-13 (
FORMAT_EAN_13
) - EAN-8 (
FORMAT_EAN_8
) - ITF (
FORMAT_ITF
) - UPC-A (
FORMAT_UPC_A
) - UPC-E (
FORMAT_UPC_E
) - Kod QR (
FORMAT_QR_CODE
) - PDF417 (
FORMAT_PDF417
) - aztecki (
FORMAT_AZTEC
) - Macierz danych (
FORMAT_DATA_MATRIX
)
Począwszy od modelu 17.1.0 w pakiecie i modelu niepołączonego 18.2.0, można też
enableAllPotentialBarcodes()
, aby zwrócić wszystkie potencjalne kody kreskowe, nawet jeśli
nie może zostać zdekodowane. Może to ułatwić dalsze wykrywanie treści, na przykład
lub powiększyć obraz w aparacie, aby uzyskać wyraźniejszy obraz każdego kodu kreskowego
ramkę ograniczającą.
Kotlin
val options = BarcodeScannerOptions.Builder() .setBarcodeFormats(...) .enableAllPotentialBarcodes() // Optional .build()
Java
BarcodeScannerOptions options = new BarcodeScannerOptions.Builder() .setBarcodeFormats(...) .enableAllPotentialBarcodes() // Optional .build();
Further on, starting from bundled library 17.2.0 and unbundled library 18.3.0, a new feature called auto-zoom has been introduced to further enhance the barcode scanning experience. With this feature enabled, the app is notified when all barcodes within the view are too distant for decoding. As a result, the app can effortlessly adjust the camera's zoom ratio to the recommended setting provided by the library, ensuring optimal focus and readability. This feature will significantly enhance the accuracy and success rate of barcode scanning, making it easier for apps to capture information precisely.
To enable auto-zooming and customize the experience, you can utilize the
setZoomSuggestionOptions()
method along with your
own ZoomCallback
handler and desired maximum zoom
ratio, as demonstrated in the code below.
Kotlin
val options = BarcodeScannerOptions.Builder() .setBarcodeFormats(...) .setZoomSuggestionOptions( new ZoomSuggestionOptions.Builder(zoomCallback) .setMaxSupportedZoomRatio(maxSupportedZoomRatio) .build()) // Optional .build()
Java
BarcodeScannerOptions options = new BarcodeScannerOptions.Builder() .setBarcodeFormats(...) .setZoomSuggestionOptions( new ZoomSuggestionOptions.Builder(zoomCallback) .setMaxSupportedZoomRatio(maxSupportedZoomRatio) .build()) // Optional .build();
zoomCallback
is required to be provided to handle whenever the library
suggests a zoom should be performed and this callback will always be called on
the main thread.
The following code snippet shows an example of defining a simple callback.
Kotlin
fun setZoom(ZoomRatio: Float): Boolean { if (camera.isClosed()) return false camera.getCameraControl().setZoomRatio(zoomRatio) return true }
Java
boolean setZoom(float zoomRatio) { if (camera.isClosed()) { return false; } camera.getCameraControl().setZoomRatio(zoomRatio); return true; }
maxSupportedZoomRatio
is related to the camera hardware, and different camera
libraries have different ways to fetch it (see the javadoc of the setter
method). In case this is not provided, an
unbounded zoom ratio might be produced by the library which might not be
supported. Refer to the
setMaxSupportedZoomRatio()
method
introduction to see how to get the max supported zoom ratio with different
Camera libraries.
When auto-zooming is enabled and no barcodes are successfully decoded within
the view, BarcodeScanner
triggers your zoomCallback
with the requested
zoomRatio
. If the callback correctly adjusts the camera to this zoomRatio
,
it is highly probable that the most centered potential barcode will be decoded
and returned.
A barcode may remain undecodable even after a successful zoom-in. In such cases,
BarcodeScanner
may either invoke the callback for another round of zoom-in
until the maxSupportedZoomRatio
is reached, or provide an empty list (or a
list containing potential barcodes that were not decoded, if
enableAllPotentialBarcodes()
was called) to the OnSuccessListener
(which
will be defined in step 4. Process the image).
2. Prepare the input image
To recognize barcodes in an image, create anInputImage
object
from either a Bitmap
, media.Image
, ByteBuffer
, byte array, or a file on
the device. Then, pass the InputImage
object to the
BarcodeScanner
's process
method.
You can create an InputImage
object from different sources, each is explained below.
Using a media.Image
To create an InputImage
object from a media.Image
object, such as when you capture an image from a
device's camera, pass the media.Image
object and the image's
rotation to InputImage.fromMediaImage()
.
If you use the
CameraX library, the OnImageCapturedListener
and
ImageAnalysis.Analyzer
classes calculate the rotation value
for you.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Jeśli nie korzystasz z biblioteki aparatu, która określa kąt obrotu obrazu, może go obliczyć na podstawie stopnia obrotu urządzenia i orientacji aparatu czujnik w urządzeniu:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Następnie przekaż obiekt media.Image
oraz
wartość stopnia obrotu na InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Za pomocą identyfikatora URI pliku
Aby utworzyć InputImage
obiektu z identyfikatora URI pliku, przekaż kontekst aplikacji oraz identyfikator URI pliku do
InputImage.fromFilePath()
Jest to przydatne, gdy
użyj intencji ACTION_GET_CONTENT
, aby zachęcić użytkownika do wyboru
obraz z aplikacji Galeria.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Przy użyciu: ByteBuffer
lub ByteArray
Aby utworzyć InputImage
obiektu z ByteBuffer
lub ByteArray
, najpierw oblicz wartość obrazu
stopień obrotu zgodnie z wcześniejszym opisem dla danych wejściowych media.Image
.
Następnie utwórz obiekt InputImage
z buforem lub tablicą oraz
wysokość, szerokość, format kodowania kolorów i stopień obrotu:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Korzystanie z: Bitmap
Aby utworzyć InputImage
z obiektu Bitmap
, wypełnij tę deklarację:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
Obraz jest reprezentowany przez obiekt Bitmap
wraz z informacją o obróceniu w stopniach.
3. Pobieranie instancji BarcodeScanner
Kotlin
val scanner = BarcodeScanning.getClient() // Or, to specify the formats to recognize: // val scanner = BarcodeScanning.getClient(options)
Java
BarcodeScanner scanner = BarcodeScanning.getClient(); // Or, to specify the formats to recognize: // BarcodeScanner scanner = BarcodeScanning.getClient(options);
4. Przetwarzanie zdjęcia
Przekaż obraz do metodyprocess
:
Kotlin
val result = scanner.process(image) .addOnSuccessListener { barcodes -> // Task completed successfully // ... } .addOnFailureListener { // Task failed with an exception // ... }
Java
Task<List<Barcode>> result = scanner.process(image) .addOnSuccessListener(new OnSuccessListener<List<Barcode>>() { @Override public void onSuccess(List<Barcode> barcodes) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
5. Uzyskiwanie informacji z kodów kreskowych
Jeśli operacja rozpoznawania kodu kreskowego się powiedzie, zobaczysz listęBarcode
są przekazywane do detektora sukcesu. Każdy obiekt Barcode
reprezentuje
kodu kreskowego wykrytego na zdjęciu. Dla każdego kodu kreskowego można sprawdzić jego wartość
współrzędnych ograniczających w obrazie wejściowym, jak i nieprzetworzonych danych zakodowanych przez
kodu kreskowego. Ponadto, jeśli skaner kodów kreskowych był w stanie określić typ danych
zakodowanym kodem kreskowym, otrzymasz obiekt zawierający przeanalizowane dane.
Na przykład:
Kotlin
for (barcode in barcodes) { val bounds = barcode.boundingBox val corners = barcode.cornerPoints val rawValue = barcode.rawValue val valueType = barcode.valueType // See API reference for complete list of supported types when (valueType) { Barcode.TYPE_WIFI -> { val ssid = barcode.wifi!!.ssid val password = barcode.wifi!!.password val type = barcode.wifi!!.encryptionType } Barcode.TYPE_URL -> { val title = barcode.url!!.title val url = barcode.url!!.url } } }
Java
for (Barcode barcode: barcodes) { Rect bounds = barcode.getBoundingBox(); Point[] corners = barcode.getCornerPoints(); String rawValue = barcode.getRawValue(); int valueType = barcode.getValueType(); // See API reference for complete list of supported types switch (valueType) { case Barcode.TYPE_WIFI: String ssid = barcode.getWifi().getSsid(); String password = barcode.getWifi().getPassword(); int type = barcode.getWifi().getEncryptionType(); break; case Barcode.TYPE_URL: String title = barcode.getUrl().getTitle(); String url = barcode.getUrl().getUrl(); break; } }
Wskazówki dotyczące poprawy skuteczności w czasie rzeczywistym
Jeśli chcesz skanować kody kreskowe za pomocą aplikacji działającej w czasie rzeczywistym, postępuj zgodnie z tymi wytycznych dotyczących uzyskiwania najlepszej liczby klatek na sekundę:
-
Nie rejestruj danych wejściowych w rozdzielczości natywnej kamery. Na niektórych urządzeniach przechwytywanie danych wejściowych w rozdzielczości natywnej zapewnia bardzo duże w megapikselach), co skutkuje bardzo małym opóźnieniem bez dokładności. Zamiast tego wysyłaj z aparatu tylko ten rozmiar, który jest wymagany do wykrywania kodu kreskowego, który zwykle nie przekracza 2 megapikseli.
Jeśli szybkość skanowania jest ważna, możesz zmniejszyć zakres skanowania i ich rozwiązania. Należy jednak pamiętać o minimalnym rozmiarze kodu kreskowego. opisane powyżej.
Jeśli próbujesz rozpoznać kody kreskowe z sekwencji transmisji, klatek wideo, moduł rozpoznawania może generować różne wyniki ramki. Zaczekaj, aż otrzymasz kolejną serię daje Ci pewność, że zwracasz dobry wynik.
Cyfra kontrolna nie jest obsługiwana w przypadku ITF i CODE-39.
- Jeśli używasz tagu
Camera
lubcamera2
API, ograniczanie wywołań detektora. Jeśli nowy film ramka stanie się dostępna, gdy detektor będzie aktywny, upuść ją. ZobaczVisionProcessorBase
w przykładowej aplikacji z krótkim wprowadzeniem. - Jeśli używasz interfejsu API
CameraX
, upewnij się, że strategia obciążenia wstecznego jest ustawiona na wartość domyślną .ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
Gwarantuje to, że do analizy zostanie dostarczony tylko 1 obraz naraz. Jeśli więcej obrazów generowane, gdy analizator jest zajęty, są usuwane automatycznie i nie są umieszczane w kolejce . Po zamknięciu analizowanego obrazu przez wywołanie ImageProxy.close(), zostanie wyświetlony następny najnowszy obraz. - Jeśli użyjesz danych wyjściowych detektora do nakładania grafiki na
obrazu wejściowego, najpierw pobierz wynik z ML Kit, a następnie wyrenderuj obraz
i nakładanie nakładek w jednym kroku. Powoduje to wyrenderowanie na powierzchni wyświetlania
tylko raz na każdą ramkę wejściową. Zobacz
CameraSourcePreview
i .GraphicOverlay
w przykładowej aplikacji z krótkim wprowadzeniem. - Jeśli korzystasz z interfejsu API Camera2, rób zdjęcia w
Format:
ImageFormat.YUV_420_888
. Jeśli używasz starszej wersji interfejsu Camera API, rób zdjęcia w Format:ImageFormat.NV21
.
O ile nie stwierdzono inaczej, treść tej strony jest objęta licencją Creative Commons – uznanie autorstwa 4.0, a fragmenty kodu są dostępne na licencji Apache 2.0. Szczegółowe informacje na ten temat zawierają zasady dotyczące witryny Google Developers. Java jest zastrzeżonym znakiem towarowym firmy Oracle i jej podmiotów stowarzyszonych.
Ostatnia aktualizacja: 2024-09-20 UTC.