在 Android 上使用 ML Kit 掃描條碼

您可以使用 ML Kit 辨識和解碼條碼。

功能未綁定組合
實作模型會透過 Google Play 服務動態下載。模型會在建構期間與應用程式建立靜態連結。
應用程式大小大小約增加 200 KB。檔案大小約增加 2.4 MB。
初始化時間首次使用時,可能需要等待模型下載。模型現已可供使用。

立即試用

事前準備

  1. 在專案層級的 build.gradle 檔案中,請務必在 buildscriptallprojects 區段中納入 Google 的 Maven 存放區。

  2. 將 ML Kit Android 程式庫的依附元件新增至模組的應用程式層級 Gradle 檔案,通常為 app/build.gradle。請根據您的需求選擇下列其中一個依附元件:

    如要將模型與應用程式組合:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:barcode-scanning:17.3.0'
    }
    

    如要在 Google Play 服務中使用模型:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-barcode-scanning:18.3.1'
    }
    
  3. 如果您選擇使用 Google Play 服務中的模型,可以設定應用程式,在從 Play 商店安裝應用程式後,自動將模型下載到裝置。如要這麼做,請在應用程式的 AndroidManifest.xml 檔案中加入以下宣告:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="barcode" >
          <!-- To use multiple models: android:value="barcode,model2,model3" -->
    </application>
    

    您也可以透過 Google Play 服務 ModuleInstallClient API,明確檢查模型的可用性,並要求下載。

    如果您未啟用安裝時的模型下載功能或要求明確下載,系統會在您首次執行檢查工具時下載模型。在下載完成前提出的要求不會產生任何結果。

輸入圖片規範

  • 如要讓 ML Kit 準確讀取條碼,輸入圖片必須包含由足夠像素資料代表的條碼。

    具體的像素資料需求取決於條碼類型和其中編碼的資料量,因為許多條碼都支援可變大小的酬載。一般來說,條碼的最小有效單位寬度至少應為 2 像素,而 2D 條碼的高度則應為 2 像素。

    舉例來說,EAN-13 條碼由寬度為 1、2、3 或 4 個單位的條紋和空白組成,因此 EAN-13 條碼圖片的條紋和空白寬度應至少為 2、4、6 和 8 像素。由於 EAN-13 條碼的總寬度為 95 個單位,因此條碼的寬度至少應為 190 像素。

    密集格式 (例如 PDF417) 需要更大的像素尺寸,才能讓 ML Kit 可靠地讀取。舉例來說,PDF417 代碼在單一列中最多可容納 34 個 17 個單位寬的「字元」,因此寬度至少應為 1156 像素。

  • 圖片對焦不佳可能會影響掃描準確度。如果應用程式無法取得可接受的結果,請要求使用者重新拍攝圖片。

  • 對於一般應用程式,建議提供解析度較高的圖片,例如 1280x720 或 1920x1080,這樣就能在較遠的距離掃描條碼。

    不過,在延遲時間至關重要的應用程式中,您可以透過以較低解析度擷取圖片的方式來提升效能,但必須要求條碼佔輸入圖片的大部分。另請參閱改善即時效能的訣竅

1. 設定條碼掃描器

如果您知道要讀取哪些條碼格式,可以將條碼偵測器設為只偵測這些格式,藉此提升速度。

舉例來說,如要只偵測 Aztec 代碼和 QR code,請建構 BarcodeScannerOptions 物件,如下例所示:

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build();

支援的格式如下:

  • Code 128 (FORMAT_CODE_128)
  • Code 39 (FORMAT_CODE_39)
  • 代碼 93 (FORMAT_CODE_93)
  • Codabar (FORMAT_CODABAR)
  • EAN-13 (FORMAT_EAN_13)
  • EAN-8 (FORMAT_EAN_8)
  • ITF (FORMAT_ITF)
  • UPC-A (FORMAT_UPC_A)
  • UPC-E (FORMAT_UPC_E)
  • QR code (FORMAT_QR_CODE)
  • PDF417 (FORMAT_PDF417)
  • Aztec (FORMAT_AZTEC)
  • Data Matrix (FORMAT_DATA_MATRIX)

從套件模型 17.1.0 和非套件模型 18.2.0 開始,您也可以呼叫 enableAllPotentialBarcodes() 來傳回所有可能的條碼,即使無法解碼也一樣。這可用於進一步偵測,例如將相機鏡頭縮放至更清楚的圖像,以便在傳回的邊界框中偵測任何條碼。

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .enableAllPotentialBarcodes() // Optional
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .enableAllPotentialBarcodes() // Optional
        .build();

Further on, starting from bundled library 17.2.0 and unbundled library 18.3.0, a new feature called auto-zoom has been introduced to further enhance the barcode scanning experience. With this feature enabled, the app is notified when all barcodes within the view are too distant for decoding. As a result, the app can effortlessly adjust the camera's zoom ratio to the recommended setting provided by the library, ensuring optimal focus and readability. This feature will significantly enhance the accuracy and success rate of barcode scanning, making it easier for apps to capture information precisely.

To enable auto-zooming and customize the experience, you can utilize the setZoomSuggestionOptions() method along with your own ZoomCallback handler and desired maximum zoom ratio, as demonstrated in the code below.

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .setZoomSuggestionOptions(
            new ZoomSuggestionOptions.Builder(zoomCallback)
                .setMaxSupportedZoomRatio(maxSupportedZoomRatio)
                .build()) // Optional
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .setZoomSuggestionOptions(
            new ZoomSuggestionOptions.Builder(zoomCallback)
                .setMaxSupportedZoomRatio(maxSupportedZoomRatio)
                .build()) // Optional
        .build();

zoomCallback is required to be provided to handle whenever the library suggests a zoom should be performed and this callback will always be called on the main thread.

The following code snippet shows an example of defining a simple callback.

Kotlin

fun setZoom(ZoomRatio: Float): Boolean {
    if (camera.isClosed()) return false
    camera.getCameraControl().setZoomRatio(zoomRatio)
    return true
}

Java

boolean setZoom(float zoomRatio) {
    if (camera.isClosed()) {
        return false;
    }
    camera.getCameraControl().setZoomRatio(zoomRatio);
    return true;
}

maxSupportedZoomRatio is related to the camera hardware, and different camera libraries have different ways to fetch it (see the javadoc of the setter method). In case this is not provided, an unbounded zoom ratio might be produced by the library which might not be supported. Refer to the setMaxSupportedZoomRatio() method introduction to see how to get the max supported zoom ratio with different Camera libraries.

When auto-zooming is enabled and no barcodes are successfully decoded within the view, BarcodeScanner triggers your zoomCallback with the requested zoomRatio. If the callback correctly adjusts the camera to this zoomRatio, it is highly probable that the most centered potential barcode will be decoded and returned.

A barcode may remain undecodable even after a successful zoom-in. In such cases, BarcodeScanner may either invoke the callback for another round of zoom-in until the maxSupportedZoomRatio is reached, or provide an empty list (or a list containing potential barcodes that were not decoded, if enableAllPotentialBarcodes() was called) to the OnSuccessListener (which will be defined in step 4. Process the image).

2. Prepare the input image

To recognize barcodes in an image, create an InputImage object from either a Bitmap, media.Image, ByteBuffer, byte array, or a file on the device. Then, pass the InputImage object to the BarcodeScanner's process method.

You can create an InputImage object from different sources, each is explained below.

Using a media.Image

To create an InputImage object from a media.Image object, such as when you capture an image from a device's camera, pass the media.Image object and the image's rotation to InputImage.fromMediaImage().

If you use the CameraX library, the OnImageCapturedListener and ImageAnalysis.Analyzer classes calculate the rotation value for you.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

如果您未使用提供圖片旋轉角度的相機程式庫,可以根據裝置的旋轉角度和裝置中相機感應器的方向來計算:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

接著,將 media.Image 物件和旋轉度數值傳遞至 InputImage.fromMediaImage()

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

使用檔案 URI

如要從檔案 URI 建立 InputImage 物件,請將應用程式內容和檔案 URI 傳遞至 InputImage.fromFilePath()。當您使用 ACTION_GET_CONTENT 意圖,提示使用者從相片庫應用程式中選取圖片時,這項功能就很實用。

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

使用 ByteBufferByteArray

如要從 ByteBufferByteArray 建立 InputImage 物件,請先計算圖片旋轉角度,如前文所述的 media.Image 輸入資料。接著,請使用緩衝區或陣列,搭配圖片的高度、寬度、顏色編碼格式和旋轉角度,建立 InputImage 物件:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

使用 Bitmap

如要從 Bitmap 物件建立 InputImage 物件,請進行下列宣告:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

圖片由 Bitmap 物件和旋轉度數代表。

3. 取得 BarcodeScanner 的例項

Kotlin

val scanner = BarcodeScanning.getClient()
// Or, to specify the formats to recognize:
// val scanner = BarcodeScanning.getClient(options)

Java

BarcodeScanner scanner = BarcodeScanning.getClient();
// Or, to specify the formats to recognize:
// BarcodeScanner scanner = BarcodeScanning.getClient(options);

4. 處理圖片

將圖片傳遞至 process 方法:

Kotlin

val result = scanner.process(image)
        .addOnSuccessListener { barcodes ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener {
            // Task failed with an exception
            // ...
        }

Java

Task<List<Barcode>> result = scanner.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<Barcode>>() {
            @Override
            public void onSuccess(List<Barcode> barcodes) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

5. 從條碼取得資訊

如果條碼辨識作業成功,系統會將 Barcode 物件清單傳遞至成功事件監聽器。每個 Barcode 物件都代表在圖片中偵測到的條碼。您可以為每個條碼取得輸入圖片中的邊界座標,以及條碼編碼的原始資料。此外,如果條碼掃描器能夠判斷條碼所編碼的資料類型,您就能取得包含剖析資料的物件。

例如:

Kotlin

for (barcode in barcodes) {
    val bounds = barcode.boundingBox
    val corners = barcode.cornerPoints

    val rawValue = barcode.rawValue

    val valueType = barcode.valueType
    // See API reference for complete list of supported types
    when (valueType) {
        Barcode.TYPE_WIFI -> {
            val ssid = barcode.wifi!!.ssid
            val password = barcode.wifi!!.password
            val type = barcode.wifi!!.encryptionType
        }
        Barcode.TYPE_URL -> {
            val title = barcode.url!!.title
            val url = barcode.url!!.url
        }
    }
}

Java

for (Barcode barcode: barcodes) {
    Rect bounds = barcode.getBoundingBox();
    Point[] corners = barcode.getCornerPoints();

    String rawValue = barcode.getRawValue();

    int valueType = barcode.getValueType();
    // See API reference for complete list of supported types
    switch (valueType) {
        case Barcode.TYPE_WIFI:
            String ssid = barcode.getWifi().getSsid();
            String password = barcode.getWifi().getPassword();
            int type = barcode.getWifi().getEncryptionType();
            break;
        case Barcode.TYPE_URL:
            String title = barcode.getUrl().getTitle();
            String url = barcode.getUrl().getUrl();
            break;
    }
}

改善即時成效的訣竅

如果您想在即時應用程式中掃描條碼,請遵循下列規範,以獲得最佳的幀率:

  • 請勿以攝影機的原生解析度擷取輸入內容。在某些裝置上,以原生解析度擷取輸入內容會產生極大的圖片 (超過 1000 萬像素),導致延遲時間極長,且無法提升準確度。請改為只要求相機提供用於條碼偵測所需的大小,通常不超過 2000 萬像素。

    如果掃描速度很重要,您可以進一步降低圖像擷取解析度。不過,請注意上述所述的條碼大小最低要求。

    如果您嘗試從一系列串流影片影格中辨識條碼,辨識器可能會產生不同影格結果。請等到連續幾次都取得相同值,才能確保您傳回的結果正確無誤。

    ITF 和 CODE-39 不支援檢查和校正碼。

  • 如果您使用 Cameracamera2 API,請將呼叫限制在偵測器中。如果在偵測器運作期間有新的影片影格可用,請捨棄該影格。如需範例,請參閱快速入門範例應用程式中的 VisionProcessorBase 類別。
  • 如果您使用 CameraX API,請務必將回壓策略設為預設值 ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST。這樣就能確保每次只會提交一張圖片進行分析。如果在分析器忙碌時產生更多圖片,系統會自動捨棄這些圖片,不會將這些圖片排入佇列以供傳送。呼叫 ImageProxy.close() 關閉要分析的圖片後,系統會傳送下一個最新的圖片。
  • 如果您使用偵測器的輸出內容,在輸入圖片上疊加圖形,請先從 ML Kit 取得結果,然後在單一步驟中算繪圖片和疊加圖形。這項作業只會針對每個輸入影格轉譯至顯示介面。如需範例,請參閱快速入門範例應用程式中的 CameraSourcePreview GraphicOverlay 類別。
  • 如果您使用 Camera2 API,請以 ImageFormat.YUV_420_888 格式擷取圖片。如果您使用舊版 Camera API,請以 ImageFormat.NV21 格式擷取圖片。