สแกนบาร์โค้ดด้วย ML Kit ใน Android

คุณสามารถใช้ ML Kit เพื่อจดจำและถอดรหัสบาร์โค้ดได้

ฟีเจอร์ไม่ได้รวมกลุ่มรวมกลุ่ม
การใช้งานระบบจะดาวน์โหลดโมเดลแบบไดนามิกผ่านบริการ Google Playโมเดลจะลิงก์กับแอปแบบคงที่ ณ เวลาที่สร้าง
ขนาดแอปเพิ่มขนาดประมาณ 200 KBเพิ่มขนาดประมาณ 2.4 MB
เวลาที่ใช้ในการเริ่มต้นคุณอาจต้องรอให้โมเดลดาวน์โหลดก่อนใช้งานครั้งแรกโมเดลพร้อมใช้งานทันที

ลองเลย

ก่อนเริ่มต้น

  1. ในไฟล์ build.gradle ระดับโปรเจ็กต์ ให้ตรวจสอบว่าได้ใส่ที่เก็บ Maven ของ Google ไว้ทั้งในส่วน buildscript และ allprojects

  2. เพิ่ม Dependency สำหรับคลัง ML Kit สำหรับ Android ลงในไฟล์ Gradle ระดับแอปของโมดูล ซึ่งมักจะเป็น app/build.gradle เลือก 1 ในข้อกำหนดต่อไปนี้ตามความต้องการของคุณ

    สำหรับการรวมโมเดลกับแอป

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:barcode-scanning:17.3.0'
    }
    

    สำหรับการใช้โมเดลในบริการ Google Play

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-barcode-scanning:18.3.1'
    }
    
  3. หากเลือกใช้โมเดลใน Google Play Services คุณจะกำหนดค่าแอปให้ดาวน์โหลดโมเดลลงในอุปกรณ์โดยอัตโนมัติได้หลังจากที่ติดตั้งแอปจาก Play Store โดยเพิ่มประกาศต่อไปนี้ลงในไฟล์ AndroidManifest.xml ของแอป

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="barcode" >
          <!-- To use multiple models: android:value="barcode,model2,model3" -->
    </application>
    

    นอกจากนี้ คุณยังตรวจสอบความพร้อมใช้งานของโมเดลและขอดาวน์โหลดได้อย่างชัดเจนผ่าน ModuleInstallClient API ของบริการ Google Play

    หากคุณไม่ได้เปิดใช้การดาวน์โหลดโมเดลขณะติดตั้งหรือขอการดาวน์โหลดอย่างชัดแจ้ง ระบบจะดาวน์โหลดโมเดลเมื่อคุณเรียกใช้เครื่องสแกนเป็นครั้งแรก คำขอที่คุณส่งก่อนการดาวน์โหลดเสร็จสมบูรณ์จะไม่มีผล

หลักเกณฑ์เกี่ยวกับรูปภาพอินพุต

  • หากต้องการให้ ML Kit อ่านบาร์โค้ดได้อย่างแม่นยำ รูปภาพอินพุตต้องมีบาร์โค้ดที่แสดงโดยข้อมูลพิกเซลที่เพียงพอ

    ข้อกําหนดเฉพาะของข้อมูลพิกเซลจะขึ้นอยู่กับทั้งประเภทของบาร์โค้ดและจํานวนข้อมูลที่เข้ารหัสในบาร์โค้ด เนื่องจากบาร์โค้ดจํานวนมากรองรับเพย์โหลดขนาดแปรผัน โดยทั่วไปแล้ว หน่วยที่เล็กที่สุดที่สื่อความหมายของบาร์โค้ดควรมีความกว้างอย่างน้อย 2 พิกเซล และสำหรับรหัส 2 มิติ ความสูงควรอยู่ที่ 2 พิกเซล

    ตัวอย่างเช่น บาร์โค้ด EAN-13 ประกอบด้วยแถบและเว้นวรรคที่มีความกว้าง 1, 2, 3 หรือ 4 หน่วย ดังนั้นรูปภาพบาร์โค้ด EAN-13 ควรมีแถบและเว้นวรรคที่มีความกว้างอย่างน้อย 2, 4, 6 และ 8 พิกเซล เนื่องจากบาร์โค้ด EAN-13 มีความกว้างทั้งหมด 95 หน่วย บาร์โค้ดจึงควรมีความกว้างอย่างน้อย 190 พิกเซล

    รูปแบบที่หนาแน่นกว่า เช่น PDF417 ต้องใช้ขนาดพิกเซลที่ใหญ่ขึ้นเพื่อให้ ML Kit อ่านได้อย่างน่าเชื่อถือ ตัวอย่างเช่น รหัส PDF417 อาจมี "คำ" กว้าง 17 หน่วยได้สูงสุด 34 รายการในแถวเดียว ซึ่งควรมีความกว้างอย่างน้อย 1,156 พิกเซล

  • การโฟกัสรูปภาพไม่ดีอาจส่งผลต่อความแม่นยำในการสแกน หากแอปให้ผลลัพธ์ที่ไม่ยอมรับ โปรดขอให้ผู้ใช้ถ่ายภาพอีกครั้ง

  • สําหรับการใช้งานทั่วไป เราขอแนะนําให้ใช้รูปภาพที่มีความละเอียดสูงขึ้น เช่น 1280x720 หรือ 1920x1080 ซึ่งช่วยให้สแกนบาร์โค้ดได้จากระยะไกล

    อย่างไรก็ตาม ในแอปพลิเคชันที่เวลาในการตอบสนองมีความสำคัญ คุณสามารถปรับปรุงประสิทธิภาพโดยการจับภาพที่มีความละเอียดต่ำลง แต่กำหนดให้บาร์โค้ดเป็นส่วนประกอบส่วนใหญ่ของรูปภาพอินพุต และดูเคล็ดลับในการปรับปรุงประสิทธิภาพแบบเรียลไทม์

1. กำหนดค่าเครื่องสแกนบาร์โค้ด

หากทราบว่าต้องการอ่านบาร์โค้ดรูปแบบใด คุณสามารถปรับปรุงความเร็วของเครื่องมือตรวจหาบาร์โค้ดได้โดยกำหนดค่าให้ตรวจหาเฉพาะรูปแบบเหล่านั้น

เช่น หากต้องการตรวจหาเฉพาะ Aztec Code และ QR Code ให้สร้างออบเจ็กต์ BarcodeScannerOptions ดังตัวอย่างต่อไปนี้

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build();

ระบบรองรับรูปแบบต่อไปนี้

  • Code 128 (FORMAT_CODE_128)
  • Code 39 (FORMAT_CODE_39)
  • รหัส 93 (FORMAT_CODE_93)
  • Codabar (FORMAT_CODABAR)
  • EAN-13 (FORMAT_EAN_13)
  • EAN-8 (FORMAT_EAN_8)
  • ITF (FORMAT_ITF)
  • UPC-A (FORMAT_UPC_A)
  • UPC-E (FORMAT_UPC_E)
  • คิวอาร์โค้ด (FORMAT_QR_CODE)
  • PDF417 (FORMAT_PDF417)
  • ภาษาแอซเท็ก (FORMAT_AZTEC)
  • Data Matrix (FORMAT_DATA_MATRIX)

ตั้งแต่รุ่นแบบรวมกลุ่ม 17.1.0 และรุ่นแบบแยกกลุ่ม 18.2.0 เป็นต้นไป คุณจะเรียกใช้ enableAllPotentialBarcodes() เพื่อแสดงผลบาร์โค้ดที่เป็นไปได้ทั้งหมดได้ แม้ว่าจะถอดรหัสไม่ได้ก็ตาม ซึ่งสามารถใช้เพื่ออำนวยความสะดวกในการตรวจจับเพิ่มเติม เช่น การซูมกล้องเพื่อดูภาพบาร์โค้ดในกล่องขอบเขตที่แสดงผลได้ชัดเจนยิ่งขึ้น

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .enableAllPotentialBarcodes() // Optional
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .enableAllPotentialBarcodes() // Optional
        .build();

Further on, starting from bundled library 17.2.0 and unbundled library 18.3.0, a new feature called auto-zoom has been introduced to further enhance the barcode scanning experience. With this feature enabled, the app is notified when all barcodes within the view are too distant for decoding. As a result, the app can effortlessly adjust the camera's zoom ratio to the recommended setting provided by the library, ensuring optimal focus and readability. This feature will significantly enhance the accuracy and success rate of barcode scanning, making it easier for apps to capture information precisely.

To enable auto-zooming and customize the experience, you can utilize the setZoomSuggestionOptions() method along with your own ZoomCallback handler and desired maximum zoom ratio, as demonstrated in the code below.

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .setZoomSuggestionOptions(
            new ZoomSuggestionOptions.Builder(zoomCallback)
                .setMaxSupportedZoomRatio(maxSupportedZoomRatio)
                .build()) // Optional
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .setZoomSuggestionOptions(
            new ZoomSuggestionOptions.Builder(zoomCallback)
                .setMaxSupportedZoomRatio(maxSupportedZoomRatio)
                .build()) // Optional
        .build();

zoomCallback is required to be provided to handle whenever the library suggests a zoom should be performed and this callback will always be called on the main thread.

The following code snippet shows an example of defining a simple callback.

Kotlin

fun setZoom(ZoomRatio: Float): Boolean {
    if (camera.isClosed()) return false
    camera.getCameraControl().setZoomRatio(zoomRatio)
    return true
}

Java

boolean setZoom(float zoomRatio) {
    if (camera.isClosed()) {
        return false;
    }
    camera.getCameraControl().setZoomRatio(zoomRatio);
    return true;
}

maxSupportedZoomRatio is related to the camera hardware, and different camera libraries have different ways to fetch it (see the javadoc of the setter method). In case this is not provided, an unbounded zoom ratio might be produced by the library which might not be supported. Refer to the setMaxSupportedZoomRatio() method introduction to see how to get the max supported zoom ratio with different Camera libraries.

When auto-zooming is enabled and no barcodes are successfully decoded within the view, BarcodeScanner triggers your zoomCallback with the requested zoomRatio. If the callback correctly adjusts the camera to this zoomRatio, it is highly probable that the most centered potential barcode will be decoded and returned.

A barcode may remain undecodable even after a successful zoom-in. In such cases, BarcodeScanner may either invoke the callback for another round of zoom-in until the maxSupportedZoomRatio is reached, or provide an empty list (or a list containing potential barcodes that were not decoded, if enableAllPotentialBarcodes() was called) to the OnSuccessListener (which will be defined in step 4. Process the image).

2. Prepare the input image

To recognize barcodes in an image, create an InputImage object from either a Bitmap, media.Image, ByteBuffer, byte array, or a file on the device. Then, pass the InputImage object to the BarcodeScanner's process method.

You can create an InputImage object from different sources, each is explained below.

Using a media.Image

To create an InputImage object from a media.Image object, such as when you capture an image from a device's camera, pass the media.Image object and the image's rotation to InputImage.fromMediaImage().

If you use the CameraX library, the OnImageCapturedListener and ImageAnalysis.Analyzer classes calculate the rotation value for you.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

หากไม่ได้ใช้คลังกล้องที่ระบุองศาการหมุนของรูปภาพ คุณสามารถคำนวณจากองศาการหมุนของอุปกรณ์และการวางแนวของเซ็นเซอร์กล้องในอุปกรณ์ได้โดยทำดังนี้

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

จากนั้นส่งออบเจ็กต์ media.Image และค่าองศาการหมุนไปยัง InputImage.fromMediaImage() ดังนี้

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

การใช้ URI ของไฟล์

หากต้องการสร้างออบเจ็กต์ InputImage จาก URI ของไฟล์ ให้ส่งผ่านบริบทแอปและ URI ของไฟล์ไปยัง InputImage.fromFilePath() ซึ่งจะมีประโยชน์เมื่อคุณใช้ Intent ACTION_GET_CONTENT เพื่อแจ้งให้ผู้ใช้เลือกรูปภาพจากแอปแกลเลอรี

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

การใช้ ByteBuffer หรือ ByteArray

หากต้องการสร้างออบเจ็กต์ InputImage จาก ByteBuffer หรือ ByteArray ก่อนอื่นให้คำนวณองศาการหมุนของรูปภาพตามที่อธิบายไว้ก่อนหน้านี้สำหรับอินพุต media.Image จากนั้นสร้างออบเจ็กต์ InputImage ด้วยบัฟเฟอร์หรืออาร์เรย์ พร้อมกับความสูง ความกว้าง รูปแบบการเข้ารหัสสี และองศาการหมุนของรูปภาพ

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

การใช้ Bitmap

หากต้องการสร้างออบเจ็กต์ InputImageจากออบเจ็กต์ Bitmap ให้ประกาศดังนี้

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

รูปภาพแสดงด้วยวัตถุ Bitmap พร้อมองศาการหมุน

3. รับอินสแตนซ์ของ BarcodeScanner

Kotlin

val scanner = BarcodeScanning.getClient()
// Or, to specify the formats to recognize:
// val scanner = BarcodeScanning.getClient(options)

Java

BarcodeScanner scanner = BarcodeScanning.getClient();
// Or, to specify the formats to recognize:
// BarcodeScanner scanner = BarcodeScanning.getClient(options);

4. ประมวลผลรูปภาพ

ส่งรูปภาพไปยังเมธอด process โดยทำดังนี้

Kotlin

val result = scanner.process(image)
        .addOnSuccessListener { barcodes ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener {
            // Task failed with an exception
            // ...
        }

Java

Task<List<Barcode>> result = scanner.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<Barcode>>() {
            @Override
            public void onSuccess(List<Barcode> barcodes) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

5. รับข้อมูลจากบาร์โค้ด

หากการดําเนินการจดจําบาร์โค้ดสําเร็จ ระบบจะส่งรายการออบเจ็กต์ Barcode ไปยังโปรแกรมฟังเหตุการณ์สําเร็จ ออบเจ็กต์ Barcode แต่ละรายการแสดงบาร์โค้ดที่ตรวจพบในรูปภาพ สำหรับบาร์โค้ดแต่ละรายการ คุณจะดูพิกัดขอบเขตในรูปภาพอินพุต รวมถึงข้อมูลดิบที่บาร์โค้ดเข้ารหัสไว้ได้ นอกจากนี้ หากเครื่องสแกนบาร์โค้ดระบุประเภทข้อมูลที่เข้ารหัสโดยบาร์โค้ดได้ คุณจะได้รับออบเจ็กต์ที่มีข้อมูลที่แยกวิเคราะห์แล้ว

เช่น

Kotlin

for (barcode in barcodes) {
    val bounds = barcode.boundingBox
    val corners = barcode.cornerPoints

    val rawValue = barcode.rawValue

    val valueType = barcode.valueType
    // See API reference for complete list of supported types
    when (valueType) {
        Barcode.TYPE_WIFI -> {
            val ssid = barcode.wifi!!.ssid
            val password = barcode.wifi!!.password
            val type = barcode.wifi!!.encryptionType
        }
        Barcode.TYPE_URL -> {
            val title = barcode.url!!.title
            val url = barcode.url!!.url
        }
    }
}

Java

for (Barcode barcode: barcodes) {
    Rect bounds = barcode.getBoundingBox();
    Point[] corners = barcode.getCornerPoints();

    String rawValue = barcode.getRawValue();

    int valueType = barcode.getValueType();
    // See API reference for complete list of supported types
    switch (valueType) {
        case Barcode.TYPE_WIFI:
            String ssid = barcode.getWifi().getSsid();
            String password = barcode.getWifi().getPassword();
            int type = barcode.getWifi().getEncryptionType();
            break;
        case Barcode.TYPE_URL:
            String title = barcode.getUrl().getTitle();
            String url = barcode.getUrl().getUrl();
            break;
    }
}

เคล็ดลับในการปรับปรุงประสิทธิภาพแบบเรียลไทม์

หากต้องการสแกนบาร์โค้ดในแอปพลิเคชันแบบเรียลไทม์ ให้ทำตามหลักเกณฑ์ต่อไปนี้เพื่อให้ได้อัตราเฟรมที่ดีที่สุด

  • อย่าจับภาพอินพุตที่ความละเอียดจริงของกล้อง ในอุปกรณ์บางรุ่น การจับภาพอินพุตที่ความละเอียดระดับเนทีฟจะสร้างรูปภาพขนาดใหญ่มาก (มากกว่า 10 เมกะพิกเซล) ซึ่งส่งผลให้เวลาในการตอบสนองแย่มากโดยไม่มีจุดดีในด้านความแม่นยำ แต่ให้ขอเฉพาะขนาดจากกล้องที่จําเป็นสําหรับการตรวจหาบาร์โค้ด ซึ่งปกติแล้วจะไม่เกิน 2 ล้านพิกเซล

    หากความเร็วในการสแกนสำคัญ คุณก็ลดความละเอียดในการจับภาพรูปภาพได้ อย่างไรก็ตาม โปรดคำนึงถึงข้อกำหนดขนาดบาร์โค้ดขั้นต่ำที่ระบุไว้ข้างต้น

    หากคุณพยายามจดจำบาร์โค้ดจากเฟรมวิดีโอสตรีมมิงตามลำดับ ตัวจดจำอาจให้ผลลัพธ์ที่แตกต่างกันไปในแต่ละเฟรม คุณควรรอจนกว่าจะได้รับชุดค่าที่เหมือนกันติดต่อกันเพื่อให้มั่นใจว่าคุณได้ผลลัพธ์ที่ดี

    ระบบไม่รองรับตัวเลขตรวจสอบสำหรับ ITF และ CODE-39

  • หากคุณใช้ Camera หรือ camera2 API ให้จำกัดการเรียกใช้เครื่องตรวจจับ หากเฟรมวิดีโอใหม่พร้อมใช้งานขณะที่ตัวตรวจจับทำงานอยู่ ให้วางเฟรม ดูตัวอย่างได้จากคลาส VisionProcessorBase ในแอปตัวอย่างการเริ่มต้นใช้งาน
  • หากคุณใช้ CameraX API ให้ตรวจสอบว่าได้ตั้งค่ากลยุทธ์การลดแรงดันเป็นค่าเริ่มต้นแล้ว ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST วิธีนี้ช่วยให้มั่นใจว่าจะมีการส่งรูปภาพเพียงรูปเดียวเพื่อการวิเคราะห์ในแต่ละครั้ง หากมีการสร้างรูปภาพเพิ่มเติมเมื่อเครื่องมือวิเคราะห์ไม่ว่าง ระบบจะทิ้งรูปภาพเหล่านั้นโดยอัตโนมัติและจะไม่จัดคิวเพื่อนำส่ง เมื่อปิดรูปภาพที่กำลังวิเคราะห์โดยการเรียกใช้ ImageProxy.close() ระบบจะส่งรูปภาพล่าสุดถัดไป
  • หากคุณใช้เอาต์พุตของตัวตรวจจับเพื่อวางกราฟิกซ้อนทับบนรูปภาพอินพุต ให้รับผลลัพธ์จาก ML Kit ก่อน จากนั้นจึงแสดงผลรูปภาพและวางซ้อนในขั้นตอนเดียว การดำเนินการนี้จะแสดงผลบนพื้นผิวการแสดงผลเพียงครั้งเดียวสำหรับเฟรมอินพุตแต่ละเฟรม ดูตัวอย่างได้จากคลาส CameraSourcePreview และ GraphicOverlay ในแอปตัวอย่างการเริ่มต้นใช้งาน
  • หากคุณใช้ Camera2 API ให้จับภาพในรูปแบบ ImageFormat.YUV_420_888 หากคุณใช้ Camera API เวอร์ชันเก่า ให้ถ่ายภาพในรูปแบบ ImageFormat.NV21