Android'de ML Kit ile barkod tarama

ML Kit'i kullanarak barkodları tanıyabilir ve kodlarını çözebilirsiniz.

ÖzellikPaketsizGruplandırılanlar
UygulamaModel, Google Play Hizmetleri aracılığıyla dinamik olarak indirilir.Model, derleme zamanında uygulamanıza statik olarak bağlanır.
Uygulama boyutuBoyut yaklaşık 200 KB artar.Yaklaşık 2,4 MB boyut artışı.
Başlatma süresiİlk kullanımdan önce modelin indirilmesini beklemeniz gerekebilir.Model hemen kullanılabilir.

Deneyin

Başlamadan önce

  1. Proje düzeyindeki build.gradle dosyanızda, Google'ın Maven deposunu hem buildscript hem de allprojects bölümlerinize eklediğinizden emin olun.

  2. ML Kit Android kitaplıklarının bağımlılıkları, modülünüzün uygulama düzeyindeki Gradle dosyasına (genellikle app/build.gradle) eklenmelidir. İhtiyaçlarınıza göre aşağıdaki bağımlılıklardan birini seçin:

    Modeli uygulamanızla paketlemek için:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:barcode-scanning:17.3.0'
    }
    

    Modeli Google Play Hizmetleri'nde kullanmak için:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-barcode-scanning:18.3.1'
    }
    
  3. Modeli Google Play Hizmetleri'nde kullanmayı seçerseniz uygulamanızı, Play Store'dan yüklendikten sonra modeli cihaza otomatik olarak indirecek şekilde yapılandırabilirsiniz. Bunu yapmak için uygulamanızın AndroidManifest.xml dosyasına aşağıdaki beyanı ekleyin:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="barcode" >
          <!-- To use multiple models: android:value="barcode,model2,model3" -->
    </application>
    

    Ayrıca Google Play Hizmetleri ModuleInstallClient API aracılığıyla modelin kullanılabilirliğini açıkça kontrol edebilir ve indirme isteğinde bulunabilirsiniz.

    Yükleme sırasında model indirmelerini etkinleştirmezseniz veya açık indirme isteğinde bulunmazsanız model, tarayıcıyı ilk kez çalıştırdığınızda indirilir. İndirme tamamlanmadan önce gönderdiğiniz istekler sonuç vermez.

Giriş resmi kuralları

  • ML Kit'in barkodları doğru şekilde okuyabilmesi için giriş resimlerinin, yeterli piksel verisiyle temsil edilen barkodlar içermesi gerekir.

    Birçok barkod değişken boyutlu yükü desteklediğinden, belirli piksel veri gereksinimleri hem barkod türüne hem de kodlanmış veri miktarına bağlıdır. Genel olarak, barkodun anlamlı en küçük birimi en az 2 piksel genişliğinde, 2 boyutlu kodlar için ise 2 piksel yüksekliğinde olmalıdır.

    Örneğin, EAN-13 barkodları 1, 2, 3 veya 4 birim genişliğinde şeritlerden ve boşluklardan oluşur. Bu nedenle, EAN-13 barkod resminde ideal olarak en az 2, 4, 6 ve 8 piksel genişliğinde şeritler ve boşluklar bulunur. EAN-13 barkodunun toplam genişliği 95 birim olduğundan barkod en az 190 piksel genişliğinde olmalıdır.

    PDF417 gibi daha yoğun biçimlerin ML Kit tarafından güvenilir bir şekilde okunabilmesi için daha büyük piksel boyutlarına ihtiyacı vardır. Örneğin, bir PDF417 kodunda tek bir satırda en fazla 34 tane 17 birimlik genişliğinde "kelime" bulunabilir. Bu satırın ideal genişliği en az 1.156 piksel olmalıdır.

  • Kötü resim odağı, tarama doğruluğunu etkileyebilir. Uygulamanız kabul edilebilir sonuçlar elde edemiyorsa kullanıcıdan resmi yeniden çekmesini isteyin.

  • Tipik uygulamalar için 1280x720 veya 1920x1080 gibi daha yüksek çözünürlüklü bir resim sağlamanız önerilir. Bu, barkodların kameradan daha uzak bir mesafeden taranmasını sağlar.

    Ancak gecikmenin kritik olduğu uygulamalarda, resimleri daha düşük çözünürlükte çekerek ancak barkodun giriş resminin çoğunu oluşturmasını zorunlu kılarak performansı artırabilirsiniz. Ayrıca Gerçek zamanlı performansı iyileştirmeyle ilgili ipuçları başlıklı makaleyi de inceleyin.

1. Barkod tarayıcıyı yapılandırma

Hangi barkod biçimlerini okumayı beklediğinizi biliyorsanız barkod algılayıcıyı yalnızca bu biçimleri algılayacak şekilde yapılandırarak hızını artırabilirsiniz.

Örneğin, yalnızca Aztec kodu ve QR kodlarını algılamak için aşağıdaki örnekte gösterildiği gibi bir BarcodeScannerOptions nesnesi oluşturun:

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build();

Aşağıdaki biçimler desteklenir:

  • Code 128 (FORMAT_CODE_128)
  • Code 39 (FORMAT_CODE_39)
  • Kod 93 (FORMAT_CODE_93)
  • Codabar (FORMAT_CODABAR)
  • EAN-13 (FORMAT_EAN_13)
  • EAN-8 (FORMAT_EAN_8)
  • ITF (FORMAT_ITF)
  • UPC-A (FORMAT_UPC_A)
  • UPC-E (FORMAT_UPC_E)
  • QR kodu (FORMAT_QR_CODE)
  • PDF417 (FORMAT_PDF417)
  • Aztek (FORMAT_AZTEC)
  • Data Matrix (FORMAT_DATA_MATRIX)

17.1.0 paketli modelden ve 18.2.0 paketsiz modelden itibaren, kodları çözülemese bile tüm olası barkodları döndürmek için enableAllPotentialBarcodes() işlevini de çağırabilirsiniz. Bu, daha fazla algılama işlemini kolaylaştırmak için kullanılabilir. Örneğin, döndürülen sınır kutusundaki barkodun daha net bir görüntüsünü elde etmek için kamerayı yakınlaştırabilirsiniz.

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .enableAllPotentialBarcodes() // Optional
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .enableAllPotentialBarcodes() // Optional
        .build();

Further on, starting from bundled library 17.2.0 and unbundled library 18.3.0, a new feature called auto-zoom has been introduced to further enhance the barcode scanning experience. With this feature enabled, the app is notified when all barcodes within the view are too distant for decoding. As a result, the app can effortlessly adjust the camera's zoom ratio to the recommended setting provided by the library, ensuring optimal focus and readability. This feature will significantly enhance the accuracy and success rate of barcode scanning, making it easier for apps to capture information precisely.

To enable auto-zooming and customize the experience, you can utilize the setZoomSuggestionOptions() method along with your own ZoomCallback handler and desired maximum zoom ratio, as demonstrated in the code below.

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .setZoomSuggestionOptions(
            new ZoomSuggestionOptions.Builder(zoomCallback)
                .setMaxSupportedZoomRatio(maxSupportedZoomRatio)
                .build()) // Optional
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .setZoomSuggestionOptions(
            new ZoomSuggestionOptions.Builder(zoomCallback)
                .setMaxSupportedZoomRatio(maxSupportedZoomRatio)
                .build()) // Optional
        .build();

zoomCallback is required to be provided to handle whenever the library suggests a zoom should be performed and this callback will always be called on the main thread.

The following code snippet shows an example of defining a simple callback.

Kotlin

fun setZoom(ZoomRatio: Float): Boolean {
    if (camera.isClosed()) return false
    camera.getCameraControl().setZoomRatio(zoomRatio)
    return true
}

Java

boolean setZoom(float zoomRatio) {
    if (camera.isClosed()) {
        return false;
    }
    camera.getCameraControl().setZoomRatio(zoomRatio);
    return true;
}

maxSupportedZoomRatio is related to the camera hardware, and different camera libraries have different ways to fetch it (see the javadoc of the setter method). In case this is not provided, an unbounded zoom ratio might be produced by the library which might not be supported. Refer to the setMaxSupportedZoomRatio() method introduction to see how to get the max supported zoom ratio with different Camera libraries.

When auto-zooming is enabled and no barcodes are successfully decoded within the view, BarcodeScanner triggers your zoomCallback with the requested zoomRatio. If the callback correctly adjusts the camera to this zoomRatio, it is highly probable that the most centered potential barcode will be decoded and returned.

A barcode may remain undecodable even after a successful zoom-in. In such cases, BarcodeScanner may either invoke the callback for another round of zoom-in until the maxSupportedZoomRatio is reached, or provide an empty list (or a list containing potential barcodes that were not decoded, if enableAllPotentialBarcodes() was called) to the OnSuccessListener (which will be defined in step 4. Process the image).

2. Prepare the input image

To recognize barcodes in an image, create an InputImage object from either a Bitmap, media.Image, ByteBuffer, byte array, or a file on the device. Then, pass the InputImage object to the BarcodeScanner's process method.

You can create an InputImage object from different sources, each is explained below.

Using a media.Image

To create an InputImage object from a media.Image object, such as when you capture an image from a device's camera, pass the media.Image object and the image's rotation to InputImage.fromMediaImage().

If you use the CameraX library, the OnImageCapturedListener and ImageAnalysis.Analyzer classes calculate the rotation value for you.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Resmin dönme derecesini gösteren bir kamera kitaplığı kullanmıyorsanız bunu cihazın dönme derecesinden ve cihazdaki kamera sensörünün yöneliminden hesaplayabilirsiniz:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Ardından, media.Image nesnesini ve dönüş derecesi değerini InputImage.fromMediaImage()'e iletin:

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Dosya URI'si kullanma

Dosya URI'sinden InputImage nesnesi oluşturmak için uygulama bağlamını ve dosya URI'sini InputImage.fromFilePath()'a iletin. Bu, kullanıcıdan galeri uygulamasından bir resim seçmesini istemek için ACTION_GET_CONTENT intent'i kullandığınızda kullanışlıdır.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

ByteBuffer veya ByteArray kullanma

ByteBuffer veya ByteArray öğesinden InputImage nesnesi oluşturmak için önce, media.Image girişi için daha önce açıklandığı gibi görüntünün döndürme derecesini hesaplayın. Ardından, resmin yüksekliği, genişliği, renk kodlama biçimi ve döndürme derecesiyle birlikte arabelleği veya diziyi kullanarak InputImage nesnesini oluşturun:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Bitmap kullanma

Bitmap nesnesinden InputImage nesnesi oluşturmak için aşağıdaki beyanı yapın:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Resim, döndürme dereceleriyle birlikte bir Bitmap nesnesi ile temsil edilir.

3. BarcodeScanner örneği alma

Kotlin

val scanner = BarcodeScanning.getClient()
// Or, to specify the formats to recognize:
// val scanner = BarcodeScanning.getClient(options)

Java

BarcodeScanner scanner = BarcodeScanning.getClient();
// Or, to specify the formats to recognize:
// BarcodeScanner scanner = BarcodeScanning.getClient(options);

4. Resmi işleme

Resmi process yöntemine iletin:

Kotlin

val result = scanner.process(image)
        .addOnSuccessListener { barcodes ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener {
            // Task failed with an exception
            // ...
        }

Java

Task<List<Barcode>> result = scanner.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<Barcode>>() {
            @Override
            public void onSuccess(List<Barcode> barcodes) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

5. Barkodlardan bilgi alma

Barkod tanıma işlemi başarılı olursa başarı dinleyicisine Barcode nesnesi listesi iletilir. Her Barcode nesnesi, resimde algılanan bir barkodu temsil eder. Her barkod için giriş resmindeki sınır koordinatlarını ve barkod tarafından kodlanan ham verileri alabilirsiniz. Ayrıca, barkod tarayıcı barkod tarafından kodlanan veri türünü belirleyebildiyse ayrıştırılmış veriler içeren bir nesne alabilirsiniz.

Örneğin:

Kotlin

for (barcode in barcodes) {
    val bounds = barcode.boundingBox
    val corners = barcode.cornerPoints

    val rawValue = barcode.rawValue

    val valueType = barcode.valueType
    // See API reference for complete list of supported types
    when (valueType) {
        Barcode.TYPE_WIFI -> {
            val ssid = barcode.wifi!!.ssid
            val password = barcode.wifi!!.password
            val type = barcode.wifi!!.encryptionType
        }
        Barcode.TYPE_URL -> {
            val title = barcode.url!!.title
            val url = barcode.url!!.url
        }
    }
}

Java

for (Barcode barcode: barcodes) {
    Rect bounds = barcode.getBoundingBox();
    Point[] corners = barcode.getCornerPoints();

    String rawValue = barcode.getRawValue();

    int valueType = barcode.getValueType();
    // See API reference for complete list of supported types
    switch (valueType) {
        case Barcode.TYPE_WIFI:
            String ssid = barcode.getWifi().getSsid();
            String password = barcode.getWifi().getPassword();
            int type = barcode.getWifi().getEncryptionType();
            break;
        case Barcode.TYPE_URL:
            String title = barcode.getUrl().getTitle();
            String url = barcode.getUrl().getUrl();
            break;
    }
}

Gerçek zamanlı performansı iyileştirmeye yönelik ipuçları

Gerçek zamanlı bir uygulamada barkodları taramak istiyorsanız en iyi kare hızlarını elde etmek için aşağıdaki yönergeleri uygulayın:

  • Girişleri kameranın doğal çözünürlüğünde yakalamayın. Bazı cihazlarda, girişin doğal çözünürlükte yakalanması son derece büyük (10 megapikselden fazla) resimler oluşturur. Bu da doğruluk açısından herhangi bir fayda sağlamadan çok düşük gecikmeye neden olur. Bunun yerine, kameradan yalnızca barkod algılama için gereken boyutu isteyin. Bu boyut genellikle en fazla 2 megapikseldir.

    Tarama hızı önemliyse görüntü yakalama çözünürlüğünü daha da düşürebilirsiniz. Ancak yukarıda belirtilen minimum barkod boyutu şartlarını göz önünde bulundurun.

    Akış halindeki video karelerinden barkodları tanımaya çalışıyorsanız tanımlayıcı, kareden kareye farklı sonuçlar verebilir. İyi bir sonuç döndürdüğünüzden emin olmak için aynı değerin art arda gelen bir serisini alana kadar beklemeniz gerekir.

    ITF ve CODE-39 için sağlama toplamı basamağı desteklenmez.

  • Camera veya camera2 API'sini kullanıyorsanız algılayıcıya yapılan çağrıları sınırlandırın. Algılayıcı çalışırken yeni bir video karesi kullanılabilir hale gelirse kareyi bırakın. Örnek olarak hızlı başlangıç kılavuzu örnek uygulamasındaki VisionProcessorBase sınıfına bakın.
  • CameraX API'sini kullanıyorsanız geri basınç stratejisinin varsayılan değerine ayarlandığından emin olun ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. Bu sayede, aynı anda analiz için yalnızca bir resim gönderilir. Analizör meşgulken daha fazla görüntü oluşturulursa bu görüntüler otomatik olarak bırakılır ve yayınlama için sıraya alınmaz. Analiz edilen resim, ImageProxy.close() çağrısı yapılarak kapatıldıktan sonra bir sonraki en yeni resim yayınlanır.
  • Giriş resmine grafik yerleştirmek için algılayıcının çıkışını kullanıyorsanız önce ML Kit'ten sonucu alın, ardından resmi ve yer paylaşımını tek bir adımda oluşturun. Bu, her giriş karesi için yalnızca bir kez görüntü yüzeyinde oluşturulur. Örnek olarak, hızlı başlangıç kılavuzundaki örnek uygulamadaki CameraSourcePreview ve GraphicOverlay sınıflarına bakın.
  • Camera2 API'yi kullanıyorsanız resimleri ImageFormat.YUV_420_888 biçiminde kaydedin. Eski Camera API'yi kullanıyorsanız resimleri ImageFormat.NV21 biçiminde çekin.