Scanner des codes-barres avec ML Kit sur Android

Vous pouvez utiliser ML Kit pour reconnaître et décoder les codes-barres.

<ph type="x-smartling-placeholder">
FonctionnalitéSans catégorieGroupée
ImplémentationLe modèle est téléchargé de manière dynamique via les services Google Play.Le modèle est associé de manière statique à votre application au moment de la compilation.
Taille de l'applicationAugmentation de la taille d'environ 200 Ko.Augmentation de la taille d'environ 2,4 Mo.
Délai d'initialisationVous devrez peut-être attendre que le modèle soit téléchargé avant de l'utiliser pour la première fois.Le modèle est disponible immédiatement.

Essayer

Avant de commencer

<ph type="x-smartling-placeholder">
  1. Dans le fichier build.gradle au niveau du projet, veillez à inclure l'adresse e-mail de Google Dépôt Maven dans les sections buildscript et allprojects.

  2. Ajoutez les dépendances des bibliothèques Android ML Kit au fichier fichier Gradle au niveau de l'application, généralement app/build.gradle. Choisissez l'une des options suivantes : les dépendances suivantes en fonction de vos besoins:

    Pour regrouper le modèle avec votre application:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:barcode-scanning:17.3.0'
    }
    

    Pour utiliser le modèle dans les services Google Play:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-barcode-scanning:18.3.1'
    }
    
  3. Si vous choisissez d'utiliser le modèle dans les services Google Play, vous pouvez configurer votre application pour télécharger automatiquement le modèle sur l'appareil une fois l'application installé depuis le Play Store. Pour ce faire, ajoutez la déclaration suivante au fichier le fichier AndroidManifest.xml de votre application:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="barcode" >
          <!-- To use multiple models: android:value="barcode,model2,model3" -->
    </application>
    

    Vous pouvez aussi vérifier explicitement la disponibilité du modèle et demander un téléchargement via API ModuleInstallClient des services Google Play.

    Si vous n'activez pas le téléchargement du modèle au moment de l'installation ou le modèle est téléchargé la première fois que vous exécutez l'outil d'analyse. Demandes que vous effectuez avant la fin du téléchargement ne produit aucun résultat.

Consignes pour les images d'entrée

  • Pour que ML Kit puisse lire avec précision les codes-barres, les images d'entrée doivent contenir des codes-barres représentés par suffisamment de données de pixels.

    Les exigences spécifiques concernant les données de pixels dépendent à la fois du type code-barres et la quantité de données qui y sont encodées, puisque de nombreux codes-barres acceptent une charge utile de taille variable. En général, la plus petite l'unité du code-barres doit être d'au moins 2 pixels de large et pour Codes bidimensionnels, hauteur de 2 pixels.

    Par exemple, les codes-barres EAN-13 sont composés de barres et d'espaces 1, 2, 3 ou 4 unités de large, donc une image de code-barres EAN-13 idéalement a des barres et espaces d'au moins 2, 4, 6 et 8 pixels de largeur. Étant donné qu'un code EAN-13 le code-barres fait 95 unités de large au total, le code-barres doit être d'au moins 190 pixels.

    Les formats de densité (tels que PDF417) nécessitent des dimensions en pixels supérieures pour ML Kit pour les lire de manière fiable. Par exemple, un code PDF417 peut contenir jusqu'à 34 "mots" de 17 unités de large sur une même ligne, qui devrait idéalement être au moins Largeur de 1 156 pixels.

  • Une mauvaise mise au point de l'image peut nuire à la précision de la numérisation. Si votre application ne reçoit pas des résultats acceptables, demandez à l'utilisateur de reprendre l'image.

  • Pour les applications classiques, il est recommandé de fournir une résolution d'image, par exemple 1 280 x 720 ou 1 920 x 1 080, qui génère des codes-barres à scanner à une plus grande distance de l'appareil photo.

    Toutefois, dans les applications où la latence est essentielle, vous pouvez améliorer en capturant des images à une résolution inférieure. le code-barres constituent la majorité de l'image d'entrée. Voir aussi Conseils pour améliorer les performances en temps réel

1. Configurer le lecteur de code-barres

Si vous connaissez les formats de code-barres que vous comptez lire, vous pouvez améliorer la vitesse de lecture du détecteur de code-barres en le configurant pour ne détecter que ces formats.

Par exemple, pour ne détecter que le code aztèque et les codes QR, créez une BarcodeScannerOptions comme dans l'exemple suivant:

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build();

Les formats suivants sont acceptés :

  • Code 128 (FORMAT_CODE_128)
  • Code 39 (FORMAT_CODE_39)
  • Code 93 (FORMAT_CODE_93)
  • Codabar (FORMAT_CODABAR)
  • EAN-13 (FORMAT_EAN_13)
  • EAN-8 (FORMAT_EAN_8)
  • ITF (FORMAT_ITF)
  • UPC-A (FORMAT_UPC_A)
  • UPC-E (FORMAT_UPC_E)
  • Code QR (FORMAT_QR_CODE)
  • PDF417 (FORMAT_PDF417)
  • Aztèque (FORMAT_AZTEC)
  • Matrice de données (FORMAT_DATA_MATRIX)

À partir du modèle groupé 17.1.0 et du modèle dégroupé 18.2.0, vous pouvez également appeler enableAllPotentialBarcodes() pour renvoyer tous les codes-barres potentiels, même s'ils ne peuvent pas être décodées. Cela peut permettre une détection plus poussée, par exemple en effectuant un zoom avant avec l'appareil photo pour obtenir une image plus nette des codes-barres cadre de délimitation.

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .enableAllPotentialBarcodes() // Optional
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .enableAllPotentialBarcodes() // Optional
        .build();

Further on, starting from bundled library 17.2.0 and unbundled library 18.3.0, a new feature called auto-zoom has been introduced to further enhance the barcode scanning experience. With this feature enabled, the app is notified when all barcodes within the view are too distant for decoding. As a result, the app can effortlessly adjust the camera's zoom ratio to the recommended setting provided by the library, ensuring optimal focus and readability. This feature will significantly enhance the accuracy and success rate of barcode scanning, making it easier for apps to capture information precisely.

To enable auto-zooming and customize the experience, you can utilize the setZoomSuggestionOptions() method along with your own ZoomCallback handler and desired maximum zoom ratio, as demonstrated in the code below.

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .setZoomSuggestionOptions(
            new ZoomSuggestionOptions.Builder(zoomCallback)
                .setMaxSupportedZoomRatio(maxSupportedZoomRatio)
                .build()) // Optional
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .setZoomSuggestionOptions(
            new ZoomSuggestionOptions.Builder(zoomCallback)
                .setMaxSupportedZoomRatio(maxSupportedZoomRatio)
                .build()) // Optional
        .build();

zoomCallback is required to be provided to handle whenever the library suggests a zoom should be performed and this callback will always be called on the main thread.

The following code snippet shows an example of defining a simple callback.

Kotlin

fun setZoom(ZoomRatio: Float): Boolean {
    if (camera.isClosed()) return false
    camera.getCameraControl().setZoomRatio(zoomRatio)
    return true
}

Java

boolean setZoom(float zoomRatio) {
    if (camera.isClosed()) {
        return false;
    }
    camera.getCameraControl().setZoomRatio(zoomRatio);
    return true;
}

maxSupportedZoomRatio is related to the camera hardware, and different camera libraries have different ways to fetch it (see the javadoc of the setter method). In case this is not provided, an unbounded zoom ratio might be produced by the library which might not be supported. Refer to the setMaxSupportedZoomRatio() method introduction to see how to get the max supported zoom ratio with different Camera libraries.

When auto-zooming is enabled and no barcodes are successfully decoded within the view, BarcodeScanner triggers your zoomCallback with the requested zoomRatio. If the callback correctly adjusts the camera to this zoomRatio, it is highly probable that the most centered potential barcode will be decoded and returned.

A barcode may remain undecodable even after a successful zoom-in. In such cases, BarcodeScanner may either invoke the callback for another round of zoom-in until the maxSupportedZoomRatio is reached, or provide an empty list (or a list containing potential barcodes that were not decoded, if enableAllPotentialBarcodes() was called) to the OnSuccessListener (which will be defined in step 4. Process the image).

2. Prepare the input image

To recognize barcodes in an image, create an InputImage object from either a Bitmap, media.Image, ByteBuffer, byte array, or a file on the device. Then, pass the InputImage object to the BarcodeScanner's process method.

You can create an InputImage object from different sources, each is explained below.

Using a media.Image

To create an InputImage object from a media.Image object, such as when you capture an image from a device's camera, pass the media.Image object and the image's rotation to InputImage.fromMediaImage().

If you use the CameraX library, the OnImageCapturedListener and ImageAnalysis.Analyzer classes calculate the rotation value for you.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Si vous n'utilisez pas de bibliothèque d'appareils photo qui indique le degré de rotation de l'image, le calcul à partir du degré de rotation de l'appareil et de l'orientation de la caméra capteur de l'appareil:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Ensuite, transmettez l'objet media.Image et valeur du degré de rotation sur InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Utiliser un URI de fichier

Pour créer un InputImage à partir d'un URI de fichier, transmettez le contexte de l'application et l'URI du fichier à InputImage.fromFilePath() Cela est utile lorsque vous Utiliser un intent ACTION_GET_CONTENT pour inviter l'utilisateur à sélectionner une image de son application Galerie.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Utiliser un ByteBuffer ou un ByteArray

Pour créer un InputImage d'un objet ByteBuffer ou ByteArray, calculez d'abord l'image degré de rotation décrit précédemment pour l'entrée media.Image. Ensuite, créez l'objet InputImage avec le tampon ou le tableau, ainsi que l'objet image la hauteur, la largeur, le format d'encodage des couleurs et le degré de rotation:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Utiliser un Bitmap

Pour créer un InputImage à partir d'un objet Bitmap, effectuez la déclaration suivante:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

L'image est représentée par un objet Bitmap associé à des degrés de rotation.

3. Obtenir une instance de BarcodeScanner

Kotlin

val scanner = BarcodeScanning.getClient()
// Or, to specify the formats to recognize:
// val scanner = BarcodeScanning.getClient(options)

Java

BarcodeScanner scanner = BarcodeScanning.getClient();
// Or, to specify the formats to recognize:
// BarcodeScanner scanner = BarcodeScanning.getClient(options);

4. Traiter l'image

Transmettez l'image à la méthode process:

Kotlin

val result = scanner.process(image)
        .addOnSuccessListener { barcodes ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener {
            // Task failed with an exception
            // ...
        }

Java

Task<List<Barcode>> result = scanner.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<Barcode>>() {
            @Override
            public void onSuccess(List<Barcode> barcodes) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });
<ph type="x-smartling-placeholder">

5. Obtenir des informations à partir des codes-barres

Si l'opération de reconnaissance de code-barres aboutit, une liste de Barcode sont transmis à l'écouteur de réussite. Chaque objet Barcode représente un code-barres détecté dans l'image. Pour chaque code-barres, vous pouvez obtenir les coordonnées de délimitation dans l'image d'entrée, ainsi que les données brutes encodées par code-barres. De plus, si le lecteur de code-barres a pu déterminer le type de données encodé par le code-barres, vous pouvez obtenir un objet contenant des données analysées.

Exemple :

Kotlin

for (barcode in barcodes) {
    val bounds = barcode.boundingBox
    val corners = barcode.cornerPoints

    val rawValue = barcode.rawValue

    val valueType = barcode.valueType
    // See API reference for complete list of supported types
    when (valueType) {
        Barcode.TYPE_WIFI -> {
            val ssid = barcode.wifi!!.ssid
            val password = barcode.wifi!!.password
            val type = barcode.wifi!!.encryptionType
        }
        Barcode.TYPE_URL -> {
            val title = barcode.url!!.title
            val url = barcode.url!!.url
        }
    }
}

Java

for (Barcode barcode: barcodes) {
    Rect bounds = barcode.getBoundingBox();
    Point[] corners = barcode.getCornerPoints();

    String rawValue = barcode.getRawValue();

    int valueType = barcode.getValueType();
    // See API reference for complete list of supported types
    switch (valueType) {
        case Barcode.TYPE_WIFI:
            String ssid = barcode.getWifi().getSsid();
            String password = barcode.getWifi().getPassword();
            int type = barcode.getWifi().getEncryptionType();
            break;
        case Barcode.TYPE_URL:
            String title = barcode.getUrl().getTitle();
            String url = barcode.getUrl().getUrl();
            break;
    }
}

Conseils pour améliorer les performances en temps réel

Si vous souhaitez scanner des codes-barres dans une application en temps réel, suivez ces pour obtenir des fréquences d'images optimales:

  • Ne enregistrez pas d'entrée à la résolution native de l'appareil photo. Sur certains appareils, la capture d'entrée à la résolution native produit des images extrêmement volumineuses (plus de 10 de pixels), ce qui entraîne une latence très faible sans que précision. Demandez plutôt la taille à la caméra requise pour la détection des codes-barres, généralement inférieure à 2 mégapixels.

    Si la vitesse de numérisation est importante, vous pouvez réduire davantage la capture d'image. la résolution de problèmes. Toutefois, tenez compte des exigences de taille minimale des codes-barres décrites ci-dessus.

    Si vous essayez de reconnaître des codes-barres à partir d'une séquence de flux images vidéo, le programme de reconnaissance peut produire des résultats différents d'une image à l'autre cadre. Attendez d'obtenir des séries consécutives identiques valeur pour être sûr de renvoyer un bon résultat.

    Le chiffre de la somme de contrôle n'est pas accepté pour ITF et CODE-39.

  • Si vous utilisez les Camera ou API camera2 limiter les appels au détecteur. Si une nouvelle vidéo devient disponible pendant l'exécution du détecteur, supprimez la trame. Consultez le <ph type="x-smartling-placeholder"></ph> VisionProcessorBase de l'application exemple de démarrage rapide.
  • Si vous utilisez l'API CameraX, Assurez-vous que la stratégie de contre-pression est définie sur sa valeur par défaut <ph type="x-smartling-placeholder"></ph> ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST Cela garantit qu'une seule image à la fois sera envoyée pour analyse. Si davantage d'images sont générées lorsque l'analyseur est occupé, elles sont automatiquement abandonnées et ne sont pas mises en file d'attente la livraison. Une fois que l'image en cours d'analyse est fermée en appelant ImageProxy.close(), l'image suivante la plus récente sera diffusée.
  • Si vous utilisez la sortie du détecteur pour superposer des graphiques sur l'image d'entrée, récupérez d'abord le résultat à partir de ML Kit, puis effectuez le rendu de l'image. et les superposer en une seule étape. Le rendu à la surface d'affichage une seule fois pour chaque trame d'entrée. Consultez le <ph type="x-smartling-placeholder"></ph> CameraSourcePreview et <ph type="x-smartling-placeholder"></ph> GraphicOverlay de l'application exemple de démarrage rapide.
  • Si vous utilisez l'API Camera2, capturez des images Format ImageFormat.YUV_420_888. Si vous utilisez l'ancienne API Camera, capturez les images Format ImageFormat.NV21.