Сканируйте штрих-коды с помощью ML Kit на Android

Вы можете использовать ML Kit для распознавания и декодирования штрих-кодов.

Особенность Разделенный В комплекте
Выполнение Модель динамически загружается через сервисы Google Play. Модель статически связана с вашим приложением во время сборки.
Размер приложения Увеличение размера примерно на 200 КБ. Увеличение размера примерно на 2,4 МБ.
Время инициализации Возможно, придется подождать загрузки модели перед первым использованием. Модель доступна сразу.

Попробуйте это

Прежде чем начать

  1. В файле build.gradle на уровне проекта обязательно включите репозиторий Google Maven как в разделы buildscript , так и в разделы allprojects .

  2. Добавьте зависимости для библиотек Android ML Kit в файл Gradle уровня приложения вашего модуля (обычно это app/build.gradle . Выберите одну из следующих зависимостей в зависимости от ваших потребностей:

    Для объединения модели с вашим приложением:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:barcode-scanning:17.3.0'
    }
    

    Для использования модели в Сервисах Google Play:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-barcode-scanning:18.3.1'
    }
    
  3. Если вы решите использовать модель в Сервисах Google Play , вы можете настроить свое приложение на автоматическую загрузку модели на устройство после установки приложения из Play Store. Для этого добавьте следующее объявление в файл AndroidManifest.xml вашего приложения:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="barcode" >
          <!-- To use multiple models: android:value="barcode,model2,model3" -->
    </application>
    

    Вы также можете явно проверить доступность модели и запросить загрузку через API сервисов Google Play ModuleInstallClient .

    Если вы не включите загрузку модели во время установки или не запрашиваете явную загрузку, модель загружается при первом запуске сканера. Запросы, которые вы делаете до завершения загрузки, не дают результатов.

Рекомендации по входному изображению

  • Чтобы ML Kit мог точно считывать штрих-коды, входные изображения должны содержать штрих-коды, представленные достаточным количеством пиксельных данных.

    Требования к конкретным пиксельным данным зависят как от типа штрих-кода, так и от объема закодированных в нем данных, поскольку многие штрих-коды поддерживают полезную нагрузку переменного размера. Как правило, наименьшая значимая единица штрих-кода должна иметь ширину не менее 2 пикселей, а для двумерных кодов — высоту 2 пикселя.

    Например, штрих-коды EAN-13 состоят из полос и пробелов шириной 1, 2, 3 или 4 единицы, поэтому изображение штрих-кода EAN-13 в идеале содержит полосы и пробелы длиной не менее 2, 4, 6 и более. Ширина 8 пикселей. Поскольку общая ширина штрих-кода EAN-13 составляет 95 единиц, ширина штрих-кода должна быть не менее 190 пикселей.

    Более плотные форматы, такие как PDF417, требуют большего размера в пикселях, чтобы ML Kit мог их надежно читать. Например, код PDF417 может содержать до 34 «слов» шириной 17 единиц в одной строке, которая в идеале должна иметь ширину не менее 1156 пикселей.

  • Плохая фокусировка изображения может повлиять на точность сканирования. Если ваше приложение не дает приемлемых результатов, попросите пользователя повторно захватить изображение.

  • Для типичных приложений рекомендуется предоставлять изображение с более высоким разрешением, например 1280x720 или 1920x1080, что позволяет сканировать штрих-коды с большего расстояния от камеры.

    Однако в приложениях, где задержка имеет решающее значение, вы можете повысить производительность, захватывая изображения с более низким разрешением, но требуя, чтобы штрих-код составлял большую часть входного изображения. Также см . Советы по повышению производительности в реальном времени .

1. Настройте сканер штрих-кода

Если вы знаете, какие форматы штрих-кодов вы собираетесь считывать, вы можете повысить скорость детектора штрих-кодов, настроив его на обнаружение только этих форматов.

Например, чтобы обнаружить только ацтекский код и QR-коды, создайте объект BarcodeScannerOptions , как показано в следующем примере:

Котлин

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build()

Ява

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build();

Поддерживаются следующие форматы:

  • Код 128 ( FORMAT_CODE_128 )
  • Код 39 ( FORMAT_CODE_39 )
  • Код 93 ( FORMAT_CODE_93 )
  • Кодабар ( FORMAT_CODABAR )
  • EAN-13 ( FORMAT_EAN_13 )
  • EAN-8 ( FORMAT_EAN_8 )
  • ITF ( FORMAT_ITF )
  • СКП-А ( FORMAT_UPC_A )
  • UPC-E ( FORMAT_UPC_E )
  • QR-код ( FORMAT_QR_CODE )
  • PDF417 ( FORMAT_PDF417 )
  • Ацтекский ( FORMAT_AZTEC )
  • Матрица данных ( FORMAT_DATA_MATRIX )

Начиная с объединенной модели 17.1.0 и отдельной модели 18.2.0, вы также можете вызвать enableAllPotentialBarcodes() , чтобы вернуть все потенциальные штрих-коды, даже если они не могут быть декодированы. Это можно использовать для облегчения дальнейшего обнаружения, например, путем увеличения масштаба камеры, чтобы получить более четкое изображение любого штрих-кода в возвращаемой ограничивающей рамке.

Котлин

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .enableAllPotentialBarcodes() // Optional
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .enableAllPotentialBarcodes() // Optional
        .build();

Further on, starting from bundled library 17.2.0 and unbundled library 18.3.0, a new feature called auto-zoom has been introduced to further enhance the barcode scanning experience. With this feature enabled, the app is notified when all barcodes within the view are too distant for decoding. As a result, the app can effortlessly adjust the camera's zoom ratio to the recommended setting provided by the library, ensuring optimal focus and readability. This feature will significantly enhance the accuracy and success rate of barcode scanning, making it easier for apps to capture information precisely.

To enable auto-zooming and customize the experience, you can utilize the setZoomSuggestionOptions() method along with your own ZoomCallback handler and desired maximum zoom ratio, as demonstrated in the code below.

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .setZoomSuggestionOptions(
            new ZoomSuggestionOptions.Builder(zoomCallback)
                .setMaxSupportedZoomRatio(maxSupportedZoomRatio)
                .build()) // Optional
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .setZoomSuggestionOptions(
            new ZoomSuggestionOptions.Builder(zoomCallback)
                .setMaxSupportedZoomRatio(maxSupportedZoomRatio)
                .build()) // Optional
        .build();

zoomCallback is required to be provided to handle whenever the library suggests a zoom should be performed and this callback will always be called on the main thread.

The following code snippet shows an example of defining a simple callback.

Kotlin

fun setZoom(ZoomRatio: Float): Boolean {
    if (camera.isClosed()) return false
    camera.getCameraControl().setZoomRatio(zoomRatio)
    return true
}

Java

boolean setZoom(float zoomRatio) {
    if (camera.isClosed()) {
        return false;
    }
    camera.getCameraControl().setZoomRatio(zoomRatio);
    return true;
}

maxSupportedZoomRatio is related to the camera hardware, and different camera libraries have different ways to fetch it (see the javadoc of the setter method). In case this is not provided, an unbounded zoom ratio might be produced by the library which might not be supported. Refer to the setMaxSupportedZoomRatio() method introduction to see how to get the max supported zoom ratio with different Camera libraries.

When auto-zooming is enabled and no barcodes are successfully decoded within the view, BarcodeScanner triggers your zoomCallback with the requested zoomRatio. If the callback correctly adjusts the camera to this zoomRatio, it is highly probable that the most centered potential barcode will be decoded and returned.

A barcode may remain undecodable even after a successful zoom-in. In such cases, BarcodeScanner may either invoke the callback for another round of zoom-in until the maxSupportedZoomRatio is reached, or provide an empty list (or a list containing potential barcodes that were not decoded, if enableAllPotentialBarcodes() was called) to the OnSuccessListener (which will be defined in step 4. Process the image).

2. Prepare the input image

To recognize barcodes in an image, create an InputImage object from either a Bitmap, media.Image, ByteBuffer, byte array, or a file on the device. Then, pass the InputImage object to the BarcodeScanner's process method.

You can create an InputImage object from different sources, each is explained below.

Using a media.Image

To create an InputImage object from a media.Image object, such as when you capture an image from a device's camera, pass the media.Image object and the image's rotation to InputImage.fromMediaImage().

If you use the CameraX library, the OnImageCapturedListener and ImageAnalysis.Analyzer classes calculate the rotation value for you.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Ява

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Если вы не используете библиотеку камер, которая дает вам степень поворота изображения, вы можете рассчитать ее на основе степени поворота устройства и ориентации датчика камеры в устройстве:

Котлин

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Ява

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Затем передайте объект media.Image и значение степени поворота в InputImage.fromMediaImage() :

Котлин

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Использование URI файла

Чтобы создать объект InputImage из URI файла, передайте контекст приложения и URI файла в InputImage.fromFilePath() . Это полезно, когда вы используете намерение ACTION_GET_CONTENT , чтобы предложить пользователю выбрать изображение из приложения галереи.

Котлин

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Использование ByteBuffer или ByteArray

Чтобы создать объект InputImage из ByteBuffer или ByteArray , сначала вычислите степень поворота изображения, как описано ранее для ввода media.Image . Затем создайте объект InputImage с буфером или массивом вместе с высотой, шириной изображения, форматом цветовой кодировки и степенью поворота:

Котлин

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Ява

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Использование Bitmap

Чтобы создать объект InputImage из объекта Bitmap , сделайте следующее объявление:

Котлин

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Изображение представлено объектом Bitmap вместе с градусами поворота.

3. Получите экземпляр BarcodeScanner.

Котлин

val scanner = BarcodeScanning.getClient()
// Or, to specify the formats to recognize:
// val scanner = BarcodeScanning.getClient(options)

Ява

BarcodeScanner scanner = BarcodeScanning.getClient();
// Or, to specify the formats to recognize:
// BarcodeScanner scanner = BarcodeScanning.getClient(options);

4. Обработка изображения

Передайте изображение методу process :

Котлин

val result = scanner.process(image)
        .addOnSuccessListener { barcodes ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener {
            // Task failed with an exception
            // ...
        }

Ява

Task<List<Barcode>> result = scanner.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<Barcode>>() {
            @Override
            public void onSuccess(List<Barcode> barcodes) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

5. Получите информацию из штрих-кодов

Если операция распознавания штрих-кода завершается успешно, список объектов Barcode передается прослушивателю успеха. Каждый объект Barcode представляет собой штрих-код, обнаруженный на изображении. Для каждого штрих-кода вы можете получить его ограничивающие координаты во входном изображении, а также необработанные данные, закодированные штрих-кодом. Также, если сканер штрих-кода смог определить тип данных, закодированных штрих-кодом, вы можете получить объект, содержащий разобранные данные.

Например:

Котлин

for (barcode in barcodes) {
    val bounds = barcode.boundingBox
    val corners = barcode.cornerPoints

    val rawValue = barcode.rawValue

    val valueType = barcode.valueType
    // See API reference for complete list of supported types
    when (valueType) {
        Barcode.TYPE_WIFI -> {
            val ssid = barcode.wifi!!.ssid
            val password = barcode.wifi!!.password
            val type = barcode.wifi!!.encryptionType
        }
        Barcode.TYPE_URL -> {
            val title = barcode.url!!.title
            val url = barcode.url!!.url
        }
    }
}

Ява

for (Barcode barcode: barcodes) {
    Rect bounds = barcode.getBoundingBox();
    Point[] corners = barcode.getCornerPoints();

    String rawValue = barcode.getRawValue();

    int valueType = barcode.getValueType();
    // See API reference for complete list of supported types
    switch (valueType) {
        case Barcode.TYPE_WIFI:
            String ssid = barcode.getWifi().getSsid();
            String password = barcode.getWifi().getPassword();
            int type = barcode.getWifi().getEncryptionType();
            break;
        case Barcode.TYPE_URL:
            String title = barcode.getUrl().getTitle();
            String url = barcode.getUrl().getUrl();
            break;
    }
}

Советы по повышению производительности в реальном времени

Если вы хотите сканировать штрих-коды в приложении реального времени, следуйте этим рекомендациям для достижения наилучшей частоты кадров:

  • Не записывайте входные данные с собственным разрешением камеры. На некоторых устройствах захват входных данных с собственным разрешением приводит к созданию чрезвычайно больших (10+ мегапикселей) изображений, что приводит к очень низкой задержке без какого-либо улучшения точности. Вместо этого запрашивайте у камеры только тот размер, который необходим для обнаружения штрих-кода, который обычно не превышает 2 мегапикселя.

    Если скорость сканирования важна, вы можете еще больше снизить разрешение захвата изображения. Однако помните о требованиях к минимальному размеру штрих-кода, изложенных выше.

    Если вы пытаетесь распознать штрих-коды из последовательности кадров потокового видео, распознаватель может выдавать разные результаты от кадра к кадру. Вам следует подождать, пока вы не получите последовательные серии одного и того же значения, чтобы быть уверенным, что вы возвращаете хороший результат.

    Цифра контрольной суммы не поддерживается для ITF и CODE-39.

  • Если вы используете API-интерфейс Camera или camera2 , регулируйте вызовы детектора. Если новый видеокадр становится доступным во время работы детектора, удалите этот кадр. Пример см. в классе VisionProcessorBase в примере приложения для быстрого запуска.
  • Если вы используете API CameraX , убедитесь, что для стратегии обратного давления установлено значение по умолчанию ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST . Это гарантирует, что для анализа одновременно будет передано только одно изображение. Если во время занятости анализатора создаются дополнительные изображения, они будут автоматически удалены и не будут поставлены в очередь для доставки. Как только анализируемое изображение будет закрыто с помощью вызова ImageProxy.close(), будет доставлено следующее последнее изображение.
  • Если вы используете выходные данные детектора для наложения графики на входное изображение, сначала получите результат из ML Kit, затем визуализируйте изображение и наложите его за один шаг. Это визуализируется на поверхности дисплея только один раз для каждого входного кадра. Пример см. в классах CameraSourcePreview и GraphicOverlay в примере приложения для быстрого запуска.
  • Если вы используете API Camera2, захватывайте изображения в формате ImageFormat.YUV_420_888 . Если вы используете более старый API камеры, захватывайте изображения в формате ImageFormat.NV21 .