Detecta rostros con ML Kit en Android

Puedes usar ML Kit para detectar rostros en imágenes y videos.

FunciónSin agruparRed de Búsqueda y Red de Display
ImplementaciónEl modelo se descarga de forma dinámica a través de los Servicios de Google Play.El modelo se vincula de forma estática a tu app durante el tiempo de compilación.
Tamaño de la appAumento de tamaño aproximado de 800 KB.Se aumentó el tamaño de aproximadamente 6.9 MB.
Hora de inicializaciónEs posible que debas esperar a que el modelo se descargue antes de usarlo por primera vez.El modelo está disponible de inmediato

Probar

Antes de comenzar

  1. En tu archivo build.gradle de nivel de proyecto, asegúrate de incluir el ID de Google Repositorio de Maven en las secciones buildscript y allprojects.

  2. Agrega las dependencias para las bibliotecas de Android del ML Kit al archivo archivo de Gradle a nivel de la app, que suele ser app/build.gradle. Elige una de las siguientes opciones: las siguientes dependencias según tus necesidades:

    Para empaquetar el modelo con tu app, haz lo siguiente:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:face-detection:16.1.7'
    }
    

    Para usar el modelo en los Servicios de Google Play:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-face-detection:17.1.0'
    }
    
  3. Si eliges usar el modelo en los Servicios de Google Play, puedes configurar tu app para descargar automáticamente el modelo en el dispositivo después de que la app instalada desde Play Store. Para ello, agrega la siguiente declaración al el archivo AndroidManifest.xml de tu app:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="face" >
          <!-- To use multiple models: android:value="face,model2,model3" -->
    </application>
    

    También puedes verificar explícitamente la disponibilidad del modelo y solicitar su descarga a través de API de ModuleInstallClient de los Servicios de Google Play

    Si no habilitas las descargas de modelos en el momento de la instalación ni solicitas una descarga explícita, el modelo se descarga la primera vez que ejecutas el detector. Solicitudes que realizas antes de que se complete la descarga no producirá resultados.

Lineamientos para imágenes de entrada

Para el reconocimiento facial, debes usar una imagen con una dimensión de, al menos, 480 × 360 píxeles. Para que el Kit de AA detecte rostros con precisión, las imágenes de entrada deben contener rostros que están representados con datos de píxeles suficientes. En general, cada rostro que quieras para detectar en una imagen debe ser de, al menos, 100x100 píxeles. Si quieres detectar los contornos de los rostros, ML Kit requiere una entrada de mayor resolución: cada rostro debe ser de al menos 200x200 píxeles.

Si detectas rostros en una aplicación en tiempo real, también deberías para considerar las dimensiones generales de las imágenes de entrada. Las imágenes más pequeñas pueden procesan más rápido. Por lo tanto, para reducir la latencia, capturar imágenes con resoluciones más bajas, pero mantener tenga en cuenta los requisitos de exactitud anteriores y asegúrese de que la el rostro del sujeto ocupe la mayor parte posible de la imagen. Consulta también sugerencias para mejorar el rendimiento en tiempo real.

Un enfoque de imagen deficiente también puede afectar la precisión. Si no obtienes una puntuación aceptable solicítale al usuario que vuelva a capturar la imagen.

La orientación de un rostro en relación con la cámara también puede afectar qué de atributos que detecta ML Kit. Consulta Conceptos de detección de rostro.

1. Configura el detector de rostros

Antes de aplicar la detección de rostro a una imagen, si quieres cambiar alguna de las configuración predeterminada del detector de rostros, especifícalas con una Objeto FaceDetectorOptions. Puedes cambiar las siguientes opciones de configuración:

Configuración
setPerformanceMode PERFORMANCE_MODE_FAST (predeterminado) | PERFORMANCE_MODE_ACCURATE

Prefiere la velocidad o la precisión en la detección de rostros.

setLandmarkMode LANDMARK_MODE_NONE (predeterminado) | LANDMARK_MODE_ALL

Si se debe intentar identificar "puntos de referencia" faciales: ojos, orejas, nariz, las mejillas, la boca, etcétera.

setContourMode CONTOUR_MODE_NONE (predeterminado) | CONTOUR_MODE_ALL

Indica si se deben detectar los contornos de rasgos faciales. Los contornos son detectada solo para el rostro más prominente en una imagen.

setClassificationMode CLASSIFICATION_MODE_NONE (predeterminado) | CLASSIFICATION_MODE_ALL

Si se deben clasificar los rostros en categorías como "sonriente", y "ojos abiertos".

setMinFaceSize float (valor predeterminado: 0.1f)

Establece el tamaño de rostro más pequeño deseado, expresado como la proporción de la ancho de la cabeza al ancho de la imagen.

enableTracking false (predeterminado) | true

Indica si se deben asignar ID a los rostros, que se pueden usar para hacer un seguimiento. rostros entre las imágenes.

Ten en cuenta que cuando la detección de contorno está habilitada, solo se ve un rostro detectada, por lo que el seguimiento de rostros no produce resultados útiles. Para este y para mejorar la velocidad de detección, no habilites ambas funciones y seguimiento de rostro.

Por ejemplo:

Kotlin

// High-accuracy landmark detection and face classification
val highAccuracyOpts = FaceDetectorOptions.Builder()
        .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
        .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
        .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
        .build()

// Real-time contour detection
val realTimeOpts = FaceDetectorOptions.Builder()
        .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
        .build()

Java

// High-accuracy landmark detection and face classification
FaceDetectorOptions highAccuracyOpts =
        new FaceDetectorOptions.Builder()
                .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
                .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
                .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
                .build();

// Real-time contour detection
FaceDetectorOptions realTimeOpts =
        new FaceDetectorOptions.Builder()
                .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
                .build();

2. Prepara la imagen de entrada

Para detectar rostros en una imagen, crea un objeto InputImage. desde un Bitmap, media.Image, ByteBuffer, array de bytes o un archivo en el dispositivo. Por último, pasa el objeto InputImage al Método process de FaceDetector

Para la detección de rostro, debes usar una imagen con dimensiones de al menos 480 x 360 píxeles Si estás detectando rostros en tiempo real, capturando fotogramas con esta resolución mínima puede ayudar a reducir la latencia.

Puedes crear un InputImage objeto de diferentes fuentes, cada uno se explica a continuación.

Usa un media.Image

Para crear un elemento InputImage, sigue estos pasos: objeto de un objeto media.Image, como cuando capturas una imagen de una la cámara del dispositivo, pasa el objeto media.Image y el rotación a InputImage.fromMediaImage().

Si usas biblioteca de CameraX, los elementos OnImageCapturedListener y Las clases ImageAnalysis.Analyzer calculan el valor de rotación por ti.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Si no usas una biblioteca de cámaras que indique el grado de rotación de la imagen, calcularlo a partir del grado de rotación del dispositivo y la orientación de la cámara sensor en el dispositivo:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Luego, pasa el objeto media.Image y el valor de grado de rotación a InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Usa un URI de archivo

Para crear un elemento InputImage, sigue estos pasos: objeto de un URI de archivo, pasa el contexto de la app y el URI del archivo a InputImage.fromFilePath() Esto es útil cuando usa un intent ACTION_GET_CONTENT para solicitarle al usuario que seleccione una imagen de su app de galería.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Usa un objeto ByteBuffer o ByteArray

Para crear un elemento InputImage, sigue estos pasos: objeto de una ByteBuffer o ByteArray, primero calcula la imagen grado de rotación como se describió anteriormente para la entrada media.Image. Luego, crea el objeto InputImage con el búfer o array, junto con los atributos El alto, el ancho, el formato de codificación de color y el grado de rotación:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Usa un Bitmap

Para crear un elemento InputImage, sigue estos pasos: objeto a partir de un objeto Bitmap, realiza la siguiente declaración:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

La imagen se representa con un objeto Bitmap junto con los grados de rotación.

3. Obtén una instancia de FaceDetector

Kotlin

val detector = FaceDetection.getClient(options)
// Or, to use the default option:
// val detector = FaceDetection.getClient();

Java

FaceDetector detector = FaceDetection.getClient(options);
// Or use the default options:
// FaceDetector detector = FaceDetection.getClient();

4. Procesa la imagen

Pasa la imagen al método process:

Kotlin

val result = detector.process(image)
        .addOnSuccessListener { faces ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

Task<List<Face>> result =
        detector.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<List<Face>>() {
                            @Override
                            public void onSuccess(List<Face> faces) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

5. Obtén información sobre los rostros detectados

Si la operación de detección de rostro se ejecuta correctamente, aparecerá una lista de Los objetos Face se pasan al éxito. objeto de escucha. Cada objeto Face representa un rostro que se detectó. en la imagen. Para cada rostro, puedes obtener las coordenadas de sus límites en la entrada y cualquier otra información que hayas configurado en el detector de rostros encontrar. Por ejemplo:

Kotlin

for (face in faces) {
    val bounds = face.boundingBox
    val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees
    val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    val leftEar = face.getLandmark(FaceLandmark.LEFT_EAR)
    leftEar?.let {
        val leftEarPos = leftEar.position
    }

    // If contour detection was enabled:
    val leftEyeContour = face.getContour(FaceContour.LEFT_EYE)?.points
    val upperLipBottomContour = face.getContour(FaceContour.UPPER_LIP_BOTTOM)?.points

    // If classification was enabled:
    if (face.smilingProbability != null) {
        val smileProb = face.smilingProbability
    }
    if (face.rightEyeOpenProbability != null) {
        val rightEyeOpenProb = face.rightEyeOpenProbability
    }

    // If face tracking was enabled:
    if (face.trackingId != null) {
        val id = face.trackingId
    }
}

Java

for (Face face : faces) {
    Rect bounds = face.getBoundingBox();
    float rotY = face.getHeadEulerAngleY();  // Head is rotated to the right rotY degrees
    float rotZ = face.getHeadEulerAngleZ();  // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    FaceLandmark leftEar = face.getLandmark(FaceLandmark.LEFT_EAR);
    if (leftEar != null) {
        PointF leftEarPos = leftEar.getPosition();
    }

    // If contour detection was enabled:
    List<PointF> leftEyeContour =
            face.getContour(FaceContour.LEFT_EYE).getPoints();
    List<PointF> upperLipBottomContour =
            face.getContour(FaceContour.UPPER_LIP_BOTTOM).getPoints();

    // If classification was enabled:
    if (face.getSmilingProbability() != null) {
        float smileProb = face.getSmilingProbability();
    }
    if (face.getRightEyeOpenProbability() != null) {
        float rightEyeOpenProb = face.getRightEyeOpenProbability();
    }

    // If face tracking was enabled:
    if (face.getTrackingId() != null) {
        int id = face.getTrackingId();
    }
}

Ejemplo de contornos de rostro

Cuando la detección de contorno de rostro está habilitada, obtienes una lista de puntos por cada rasgo facial que se detectó. Estos puntos representan la forma de la . Ver Rostro Conceptos de detección para obtener detalles sobre cómo se definen los contornos representados.

En la siguiente imagen, se muestra cómo se asignan estos puntos a un rostro, haz clic en el para ampliarla:

ejemplo de malla de contorno de rostro detectada

Detección de rostro en tiempo real

Si quieres usar la detección de rostro en una aplicación en tiempo real, sigue estos pasos: pautas para lograr la mejor velocidad de fotogramas:

  • Configura el detector de rostros para que use detección de contorno facial o clasificación y detección de puntos de referencia, pero no ambos:

    Detección de contorno
    Detección de puntos de referencia
    Clasificación
    Detección y clasificación de puntos de referencia
    Detección de contorno y de puntos de referencia
    Detección y clasificación de contorno
    Detección de contorno y de puntos de referencia, y clasificación

  • Habilita el modo FAST (habilitado de forma predeterminada).

  • Intenta capturar imágenes con una resolución más baja. Sin embargo, también ten en cuenta los requisitos de dimensiones de imágenes de esta API.

  • Si usas Camera o API de camera2, limitar las llamadas al detector. Si un video nuevo esté disponible mientras se ejecuta el detector, descarta el fotograma. Consulta la VisionProcessorBase en la app de muestra de inicio rápido para ver un ejemplo.
  • Si usas la API de CameraX, asegúrate de que la estrategia de contrapresión se haya establecido en su valor predeterminado ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST De esta forma, se garantiza que solo se entregará una imagen a la vez para su análisis. Si hay más imágenes que se producen cuando el analizador está ocupado, se eliminarán automáticamente y no se agregarán a la cola la entrega de software. Una vez que la imagen que se está analizando se cierra con una llamada a ImageProxy.close(), se publicará la siguiente imagen más reciente.
  • Si usas la salida del detector para superponer gráficos la imagen de entrada, primero obtén el resultado del Kit de AA y, luego, renderiza la imagen y superponerla en un solo paso. Se renderiza en la superficie de visualización. solo una vez para cada fotograma de entrada. Consulta la CameraSourcePreview y GraphicOverlay en la app de muestra de inicio rápido para ver un ejemplo.
  • Si usas la API de Camera2, captura imágenes en ImageFormat.YUV_420_888. Si usas la API de Camera, captura imágenes en ImageFormat.NV21.