Rilevamento dei volti con ML Kit su Android

Puoi utilizzare ML Kit per rilevare i volti nelle immagini e nei video.

FunzionalitàNon raggruppatiIn bundle
ImplementazioneIl modello viene scaricato in modo dinamico tramite Google Play Services.Il modello è collegato in modo statico alla tua app al momento della creazione.
Dimensioni appAumento delle dimensioni di circa 800 kB.Aumento delle dimensioni di circa 6,9 MB.
Tempo di inizializzazionePotrebbe essere necessario attendere il download del modello prima del primo utilizzo.Il modello è disponibile immediatamente

Provalo

Prima di iniziare

  1. Nel file build.gradle a livello di progetto, assicurati di includere il repository Maven di Google in entrambe le sezioni buildscript e allprojects.

  2. Aggiungi le dipendenze per le librerie Android di ML Kit al file gradle a livello di app del modulo, che in genere è app/build.gradle. Scegli una delle seguenti dipendenze in base alle tue esigenze:

    Per raggruppare il modello con la tua app:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:face-detection:16.1.6'
    }
    

    Per l'utilizzo del modello in Google Play Services:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-face-detection:17.1.0'
    }
    
  3. Se scegli di utilizzare il modello in Google Play Services, puoi configurare l'app in modo che scarichi automaticamente il modello sul dispositivo dopo averla installata dal Play Store. Per farlo, aggiungi la seguente dichiarazione al file AndroidManifest.xml dell'app:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="face" >
          <!-- To use multiple models: android:value="face,model2,model3" -->
    </application>
    

    Puoi anche verificare esplicitamente la disponibilità del modello e richiedere il download tramite l'API ModuleInstallaClient dei servizi Google Play.

    Se non abiliti i download del modello al momento dell'installazione o non richiedi un download esplicito, il modello viene scaricato la prima volta che esegui il rilevatore. Le richieste effettuate prima del completamento del download non producono risultati.

Linee guida per l'immagine di input

Per il riconoscimento dei volti, devi utilizzare un'immagine di dimensioni di almeno 480 x 360 pixel. Affinché ML Kit possa rilevare accuratamente i volti, le immagini di input devono contenere volti rappresentati da dati di pixel sufficienti. In generale, ogni volto che vuoi rilevare in un'immagine deve essere di almeno 100 x 100 pixel. Se vuoi rilevare i contorni delle facce, ML Kit richiede un input a risoluzione più elevata: ogni faccia deve essere di almeno 200 x 200 pixel.

Se rilevi volti in un'applicazione in tempo reale, considera anche le dimensioni complessive delle immagini di input. Le immagini più piccole possono essere elaborate più velocemente. Per ridurre la latenza, acquisisci immagini a risoluzioni più basse. Tuttavia, tieni presente i requisiti di precisione riportati sopra e assicurati che il volto del soggetto occupi la maggior quantità possibile di immagine. Consulta anche i suggerimenti per migliorare il rendimento in tempo reale.

Anche una scarsa messa a fuoco dell'immagine può influire sulla precisione. Se non ottieni risultati accettabili, chiedi all'utente di recuperare l'immagine.

L'orientamento di un volto rispetto alla fotocamera può influire anche sulle caratteristiche del viso rilevate da ML Kit. Vedi i concetti relativi al rilevamento facciale.

1. Configurare il rilevatore di volti

Prima di applicare il rilevamento dei volti a un'immagine, se vuoi modificare una qualsiasi delle impostazioni predefinite del riconoscimento facciale, specificale con un oggetto FaceDetectorOptions. Puoi modificare le seguenti impostazioni:

Impostazioni
setPerformanceMode PERFORMANCE_MODE_FAST (predefinito) | PERFORMANCE_MODE_ACCURATE

Prediligi la velocità o la precisione nel rilevamento dei volti.

setLandmarkMode LANDMARK_MODE_NONE (predefinito) | LANDMARK_MODE_ALL

Se tentare di identificare i "punti di riferimento" facciali: occhi, orecchie, naso, guance, bocca e così via.

setContourMode CONTOUR_MODE_NONE (predefinito) | CONTOUR_MODE_ALL

Se rilevare i contorni dei tratti del viso. I contorni vengono rilevati solo per il volto più in evidenza di un'immagine.

setClassificationMode CLASSIFICATION_MODE_NONE (predefinito) | CLASSIFICATION_MODE_ALL

Indica se classificare o meno i volti in categorie come "sorriso" e "occhi aperti".

setMinFaceSize float (valore predefinito: 0.1f)

Imposta la dimensione del volto più piccola, espressa come rapporto tra larghezza della testa e larghezza dell'immagine.

enableTracking false (predefinito) | true

Indica se assegnare o meno ai volti un ID, che può essere utilizzato per monitorare i volti tra le immagini.

Tieni presente che quando il rilevamento dei contorni è abilitato, viene rilevato un solo volto, quindi il monitoraggio dei volti non produce risultati utili. Per questo motivo e per migliorare la velocità di rilevamento, non attivare sia il rilevamento contorni sia il rilevamento dei volti.

Ad esempio:

Kotlin

// High-accuracy landmark detection and face classification
val highAccuracyOpts = FaceDetectorOptions.Builder()
        .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
        .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
        .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
        .build()

// Real-time contour detection
val realTimeOpts = FaceDetectorOptions.Builder()
        .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
        .build()

Java

// High-accuracy landmark detection and face classification
FaceDetectorOptions highAccuracyOpts =
        new FaceDetectorOptions.Builder()
                .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
                .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
                .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
                .build();

// Real-time contour detection
FaceDetectorOptions realTimeOpts =
        new FaceDetectorOptions.Builder()
                .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
                .build();

2. Prepara l'immagine di input

Per rilevare i volti in un'immagine, crea un oggetto InputImage da un array di byte Bitmap, media.Image, ByteBuffer, da un array di byte o da un file sul dispositivo. Quindi, passa l'oggetto InputImage al metodo process di FaceDetector.

Per il rilevamento facciale, devi utilizzare un'immagine con dimensioni di almeno 480 x 360 pixel. Se rilevi i volti in tempo reale, acquisire fotogrammi a questa risoluzione minima può aiutarti a ridurre la latenza.

Puoi creare un oggetto InputImage da origini diverse, spiegate di seguito.

Utilizzo di un media.Image

Per creare un oggetto InputImage da un oggetto media.Image, ad esempio quando acquisisci un'immagine dalla fotocamera di un dispositivo, passa l'oggetto media.Image e la rotazione dell'immagine a InputImage.fromMediaImage().

Se utilizzi la libreria CameraX, le classi OnImageCapturedListener e ImageAnalysis.Analyzer calcolano il valore della rotazione automaticamente.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Se non utilizzi una raccolta di videocamere che ti fornisce il grado di rotazione dell'immagine, puoi calcolarlo in base al grado di rotazione e all'orientamento del sensore della fotocamera nel dispositivo:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Quindi, passa l'oggetto media.Image e il valore del grado di rotazione a InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Utilizzo di un URI del file

Per creare un oggetto InputImage da un URI file, passa il contesto dell'app e l'URI del file a InputImage.fromFilePath(). Questo è utile quando utilizzi un intent ACTION_GET_CONTENT per richiedere all'utente di selezionare un'immagine dall'app Galleria.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Con ByteBuffer o ByteArray

Per creare un oggetto InputImage da un elemento ByteBuffer o ByteArray, devi prima calcolare il grado di rotazione dell'immagine come descritto in precedenza per l'input media.Image. Poi, crea l'oggetto InputImage con il buffer o l'array, insieme ad altezza, larghezza, formato di codifica del colore e grado di rotazione dell'immagine:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Utilizzo di un Bitmap

Per creare un oggetto InputImage da un oggetto Bitmap, effettua la seguente dichiarazione:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

L'immagine è rappresentata da un oggetto Bitmap e da un grado di rotazione.

3. Recupera un'istanza di FaceDetector

Kotlin

val detector = FaceDetection.getClient(options)
// Or, to use the default option:
// val detector = FaceDetection.getClient();

Java

FaceDetector detector = FaceDetection.getClient(options);
// Or use the default options:
// FaceDetector detector = FaceDetection.getClient();

4. Elabora l'immagine

Trasferisci l'immagine al metodo process:

Kotlin

val result = detector.process(image)
        .addOnSuccessListener { faces ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

Task<List<Face>> result =
        detector.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<List<Face>>() {
                            @Override
                            public void onSuccess(List<Face> faces) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

5. Ricevere informazioni sui volti rilevati

Se l'operazione di rilevamento dei volti ha esito positivo, un elenco di oggetti Face viene passato all'ascoltatore di operazione riuscita. Ogni oggetto Face rappresenta un volto rilevato nell'immagine. Per ogni volto, puoi ottenere le coordinate di delimitazione nell'immagine di input, nonché qualsiasi altra informazione che il rilevatore di volti ha configurato per trovare. Ad esempio:

Kotlin

for (face in faces) {
    val bounds = face.boundingBox
    val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees
    val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    val leftEar = face.getLandmark(FaceLandmark.LEFT_EAR)
    leftEar?.let {
        val leftEarPos = leftEar.position
    }

    // If contour detection was enabled:
    val leftEyeContour = face.getContour(FaceContour.LEFT_EYE)?.points
    val upperLipBottomContour = face.getContour(FaceContour.UPPER_LIP_BOTTOM)?.points

    // If classification was enabled:
    if (face.smilingProbability != null) {
        val smileProb = face.smilingProbability
    }
    if (face.rightEyeOpenProbability != null) {
        val rightEyeOpenProb = face.rightEyeOpenProbability
    }

    // If face tracking was enabled:
    if (face.trackingId != null) {
        val id = face.trackingId
    }
}

Java

for (Face face : faces) {
    Rect bounds = face.getBoundingBox();
    float rotY = face.getHeadEulerAngleY();  // Head is rotated to the right rotY degrees
    float rotZ = face.getHeadEulerAngleZ();  // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    FaceLandmark leftEar = face.getLandmark(FaceLandmark.LEFT_EAR);
    if (leftEar != null) {
        PointF leftEarPos = leftEar.getPosition();
    }

    // If contour detection was enabled:
    List<PointF> leftEyeContour =
            face.getContour(FaceContour.LEFT_EYE).getPoints();
    List<PointF> upperLipBottomContour =
            face.getContour(FaceContour.UPPER_LIP_BOTTOM).getPoints();

    // If classification was enabled:
    if (face.getSmilingProbability() != null) {
        float smileProb = face.getSmilingProbability();
    }
    if (face.getRightEyeOpenProbability() != null) {
        float rightEyeOpenProb = face.getRightEyeOpenProbability();
    }

    // If face tracking was enabled:
    if (face.getTrackingId() != null) {
        int id = face.getTrackingId();
    }
}

Esempio di contorni del volto

Se il rilevamento dei contorni del volto è attivo, ricevi un elenco di punti per ogni caratteristica del volto rilevata. Questi punti rappresentano la forma dell'elemento. Vedi Concetti relativi al riconoscimento facciale per i dettagli sulla rappresentazione dei contorni.

L'immagine seguente mostra come questi punti mappano a un volto. Fai clic sull'immagine per ingrandirla:

esempio rilevato mesh contorno viso

Rilevamento dei volti in tempo reale

Se vuoi utilizzare il rilevamento dei volti in un'applicazione in tempo reale, segui queste linee guida per ottenere le migliori frequenze fotogrammi:

  • Configura il rilevamento dei volti per utilizzare il rilevamento con i contorni del volto o la classificazione e il rilevamento dei punti di riferimento, ma non entrambi:

    Rilevamento dei contorni
    Rilevamento dei contorni
    Classificazione
    Rilevamento e classificazione dei punti di riferimento
    Rilevamento dei contorni e dei punti di riferimento
    Rilevamento e classificazione dei contorni
    Rilevamento dei contorni, rilevamento dei punti di riferimento e classificazione

  • Attiva la modalità FAST (attiva per impostazione predefinita).

  • Prova ad acquisire immagini a una risoluzione inferiore. Tuttavia, tieni presente anche i requisiti per le dimensioni immagine di questa API.

  • Se usi l'API Camera o camera2, limita le chiamate al rilevatore. Se un nuovo fotogramma video diventa disponibile mentre il rilevatore è in esecuzione, eliminalo. Per un esempio, vedi la classe VisionProcessorBase nell'app di esempio della guida rapida.
  • Se utilizzi l'API CameraX, assicurati che la strategia di contropressione sia impostata sul valore predefinito ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. Ciò garantisce che verrà pubblicata una sola immagine alla volta per l'analisi. Se vengono prodotte altre immagini quando l'analizzatore è occupato, queste verranno eliminate automaticamente e non verranno messe in coda per la distribuzione. Dopo aver chiuso l'immagine analizzata chiamando ImageProxy.close(), verrà pubblicata l'immagine più recente.
  • Se utilizzi l'output del rilevatore per sovrapporre elementi grafici all'immagine di input, ottieni il risultato da ML Kit, quindi esegui il rendering dell'immagine e della sovrapposizione in un unico passaggio. Il rendering viene eseguito sulla superficie di visualizzazione una sola volta per ogni frame di input. Per un esempio, vedi le classi CameraSourcePreview e GraphicOverlay nell'app di esempio della guida rapida.
  • Se utilizzi l'API Camera2, acquisisci le immagini in formato ImageFormat.YUV_420_888. Se utilizzi l'API Camera precedente, acquisisci le immagini in formato ImageFormat.NV21.