使用机器学习套件检测人脸 (Android)

您可以使用机器学习套件检测图片和视频中的人脸。

<ph type="x-smartling-placeholder">
功能不分类显示捆绑
实现模型通过 Google Play 服务动态下载。模型在构建时静态关联到您的应用。
应用大小大小增加约 800 KB。大小增加约 6.9 MB。
初始化时间可能需要等到模型下载完毕后才能首次使用。模型可立即使用

试试看

准备工作

<ph type="x-smartling-placeholder">
  1. 请务必在您的项目级 build.gradle 文件中添加 Google 的 buildscriptallprojects 部分中的 Maven 制品库。

  2. 将 Android 版机器学习套件库的依赖项添加到模块的 应用级 Gradle 文件,通常为 app/build.gradle。请选择以下其中一项: 以下依赖项:

    如需将模型与应用捆绑,请执行以下操作

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:face-detection:16.1.7'
    }
    

    对于在 Google Play 服务中使用模型的情况

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-face-detection:17.1.0'
    }
    
  3. 如果您选择在 Google Play 服务中使用该模型,则可以配置 在应用下载完毕后,自动将模型下载到设备上 从 Play 商店安装的应用。为此,请将以下声明添加到 应用的 AndroidManifest.xml 文件:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="face" >
          <!-- To use multiple models: android:value="face,model2,model3" -->
    </application>
    

    您还可以明确检查模型可用性,并请求通过 Google Play 服务 ModuleInstallClient API

    如果您不启用安装时模型下载或请求明确下载, 系统会在您首次运行检测器时下载模型。您提出的请求 在下载完成之前未产生任何结果。

输入图片准则

对于人脸识别,您使用的图片尺寸应至少为 480x360 像素。 为了使机器学习套件准确检测人脸,输入图片必须包含人脸 用足够像素数据表示的图片。一般来说,您需要的 至少应为 100x100 像素如果您想检测 人脸轮廓线,机器学习套件需要更高的分辨率输入: 尺寸至少应为 200x200 像素。

如果在实时应用中检测人脸,您可能还需要 考虑输入图片的整体尺寸。尺寸较小的图片 因此为了缩短延迟时间,请以较低分辨率捕获图片 遵守上述准确性要求,并确保 正文的脸会占据图像的尽可能多的空间。另请参阅 提高实时性能的相关提示

图片聚焦不佳也会影响准确性。如果不接受 结果,要求用户重新拍摄图片。

人脸相对于镜头的方向也会影响面部的 机器学习套件检测到的功能。请参阅 人脸检测概念

1. 配置人脸检测器

在对图片应用人脸检测之前,如果您想更改 人脸检测器的默认设置,请使用 FaceDetectorOptions 对象。 您可以更改以下设置:

设置
setPerformanceMode <ph type="x-smartling-placeholder"></ph> PERFORMANCE_MODE_FAST(默认) | PERFORMANCE_MODE_ACCURATE

在检测人脸时更注重速度还是准确性。

setLandmarkMode <ph type="x-smartling-placeholder"></ph> LANDMARK_MODE_NONE(默认) | LANDMARK_MODE_ALL

是否尝试识别面部“特征点”:眼睛、耳朵、鼻子、 脸颊、嘴巴等。

setContourMode <ph type="x-smartling-placeholder"></ph> CONTOUR_MODE_NONE(默认) | CONTOUR_MODE_ALL

是否检测面部特征的轮廓。轮廓线为 仅检测图片中最突出的人脸。

setClassificationMode <ph type="x-smartling-placeholder"></ph> CLASSIFICATION_MODE_NONE(默认) | CLASSIFICATION_MODE_ALL

是否将人脸分为不同类别,例如“微笑”、 以及“睁大眼睛”的程度

setMinFaceSize float(默认值:0.1f

设置所需的最小面部大小,表示为 即头部的宽度与图片的宽度相等。

enableTracking false(默认值)|true

是否为面孔分配可用于跟踪的 ID 人脸识别。

请注意,启用轮廓检测后, 因此面部跟踪生成有用的结果。为此 为了提高检测速度,请勿同时启用 检测和面部跟踪。

例如:

Kotlin

// High-accuracy landmark detection and face classification
val highAccuracyOpts = FaceDetectorOptions.Builder()
        .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
        .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
        .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
        .build()

// Real-time contour detection
val realTimeOpts = FaceDetectorOptions.Builder()
        .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
        .build()

Java

// High-accuracy landmark detection and face classification
FaceDetectorOptions highAccuracyOpts =
        new FaceDetectorOptions.Builder()
                .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
                .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
                .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
                .build();

// Real-time contour detection
FaceDetectorOptions realTimeOpts =
        new FaceDetectorOptions.Builder()
                .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
                .build();

2. 准备输入图片

如需检测图片中的人脸,请创建 InputImage 对象 从 Bitmapmedia.ImageByteBuffer、字节数组或 。然后,将 InputImage 对象传递给 FaceDetectorprocess 方法。

对于人脸检测,您应使用尺寸至少为 480x360 像素。如果您要实时检测人脸、捕获帧, 将有助于缩短延迟时间

您可以创建 InputImage 对象,下文对每种方法进行了说明。

使用 media.Image

如需创建 InputImage,请执行以下操作: 对象(例如从 media.Image 对象中捕获图片时) 请传递 media.Image 对象和图片的 旋转为 InputImage.fromMediaImage()

如果您使用 <ph type="x-smartling-placeholder"></ph> CameraX 库、OnImageCapturedListenerImageAnalysis.Analyzer 类计算旋转角度值 。

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

如果您不使用可提供图片旋转角度的相机库, 可以根据设备的旋转角度和镜头方向来计算 设备传感器:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

然后,传递 media.Image 对象和 将旋转角度值设为 InputImage.fromMediaImage()

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

使用文件 URI

如需创建 InputImage,请执行以下操作: 对象时,请将应用上下文和文件 URI 传递给 InputImage.fromFilePath()。在需要满足特定条件时 使用 ACTION_GET_CONTENT intent 提示用户进行选择 从图库应用中获取图片

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

使用 ByteBufferByteArray

如需创建 InputImage,请执行以下操作: 对象ByteBufferByteArray时,首先计算图像 旋转角度。media.Image 然后,创建带有缓冲区或数组的 InputImage 对象以及图片的 高度、宽度、颜色编码格式和旋转角度:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

使用 Bitmap

如需创建 InputImage,请执行以下操作: 对象时,请进行以下声明:Bitmap

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

图片由 Bitmap 对象和旋转角度表示。

3. 获取 FaceDetector 的一个实例

Kotlin

val detector = FaceDetection.getClient(options)
// Or, to use the default option:
// val detector = FaceDetection.getClient();

Java

FaceDetector detector = FaceDetection.getClient(options);
// Or use the default options:
// FaceDetector detector = FaceDetection.getClient();

4. 处理图片

将图片传递给 process 方法:

Kotlin

val result = detector.process(image)
        .addOnSuccessListener { faces ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

Task<List<Face>> result =
        detector.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<List<Face>>() {
                            @Override
                            public void onSuccess(List<Face> faces) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });
<ph type="x-smartling-placeholder">

5. 获取检测到的人脸的相关信息

如果人脸检测操作成功,系统将会显示一个列表, Face 对象会成功传递 监听器。每个 Face 对象代表一张检测到的人脸 图片中。对于每张面孔,您可以在输入中获取其边界坐标 图片,以及您已将人脸检测器配置为 查找。例如:

Kotlin

for (face in faces) {
    val bounds = face.boundingBox
    val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees
    val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    val leftEar = face.getLandmark(FaceLandmark.LEFT_EAR)
    leftEar?.let {
        val leftEarPos = leftEar.position
    }

    // If contour detection was enabled:
    val leftEyeContour = face.getContour(FaceContour.LEFT_EYE)?.points
    val upperLipBottomContour = face.getContour(FaceContour.UPPER_LIP_BOTTOM)?.points

    // If classification was enabled:
    if (face.smilingProbability != null) {
        val smileProb = face.smilingProbability
    }
    if (face.rightEyeOpenProbability != null) {
        val rightEyeOpenProb = face.rightEyeOpenProbability
    }

    // If face tracking was enabled:
    if (face.trackingId != null) {
        val id = face.trackingId
    }
}

Java

for (Face face : faces) {
    Rect bounds = face.getBoundingBox();
    float rotY = face.getHeadEulerAngleY();  // Head is rotated to the right rotY degrees
    float rotZ = face.getHeadEulerAngleZ();  // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    FaceLandmark leftEar = face.getLandmark(FaceLandmark.LEFT_EAR);
    if (leftEar != null) {
        PointF leftEarPos = leftEar.getPosition();
    }

    // If contour detection was enabled:
    List<PointF> leftEyeContour =
            face.getContour(FaceContour.LEFT_EYE).getPoints();
    List<PointF> upperLipBottomContour =
            face.getContour(FaceContour.UPPER_LIP_BOTTOM).getPoints();

    // If classification was enabled:
    if (face.getSmilingProbability() != null) {
        float smileProb = face.getSmilingProbability();
    }
    if (face.getRightEyeOpenProbability() != null) {
        float rightEyeOpenProb = face.getRightEyeOpenProbability();
    }

    // If face tracking was enabled:
    if (face.getTrackingId() != null) {
        int id = face.getTrackingId();
    }
}

面部轮廓的示例

启用人脸轮廓检测后, 检测到的每个面部特征。这些点表示 功能。请参阅人脸 检测概念,详细了解轮廓如何定义 代表性。

下图展示了这些点与人脸的对应关系,请点击 要放大的图片:

检测到的面部轮廓网格示例

实时人脸检测

如果您想在实时应用中使用人脸检测,请按以下方法操作 实现最佳帧速率的准则:

  • 请将人脸检测器配置为使用 面部轮廓检测或分类和特征点检测,但不能同时采用两者:

    轮廓检测
    地标检测
    分类
    特征点检测和分类
    轮廓检测和特征点检测
    轮廓检测和分类
    轮廓检测、特征点检测和分类

  • 启用 FAST 模式(默认启用)。

  • 建议以较低的分辨率捕获图片。但请注意 该 API 的图片尺寸要求

  • 如果您使用 Cameracamera2 API、 限制对检测器的调用。如果新视频 当检测器运行时有可用的帧时,请丢弃该帧。请参阅 <ph type="x-smartling-placeholder"></ph> VisionProcessorBase 类。
  • 如果您使用 CameraX API, 确保将 backpressure 策略设置为默认值 ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST。 这可保证一次只传送一张图片进行分析。如果有更多图片 在分析器繁忙时生成,它们会被自动丢弃,不会排队等待 。通过调用 ImageProxy.close(),将传递下一张图片。
  • 如果您使用检测器的输出在图像上叠加显示 输入图片,首先从机器学习套件获取结果, 和叠加层。这会渲染到 每个输入帧只执行一次。请参阅 <ph type="x-smartling-placeholder"></ph> CameraSourcePreview GraphicOverlay 类。
  • 如果您使用 Camera2 API,请使用 ImageFormat.YUV_420_888 格式。如果您使用的是旧版 Camera API,请使用 ImageFormat.NV21 格式。