আপনি ছবি এবং ভিডিওতে মুখ সনাক্ত করতে ML কিট ব্যবহার করতে পারেন।
বৈশিষ্ট্য | আনবান্ডেড | বান্ডিল |
---|---|---|
বাস্তবায়ন | মডেলটি গতিশীলভাবে Google Play পরিষেবার মাধ্যমে ডাউনলোড করা হয়। | মডেলটি বিল্ড টাইমে আপনার অ্যাপের সাথে স্ট্যাটিকভাবে লিঙ্ক করা থাকে। |
অ্যাপের আকার | প্রায় 800 KB আকার বৃদ্ধি. | প্রায় 6.9 MB আকার বৃদ্ধি. |
প্রারম্ভিক সময় | প্রথম ব্যবহারের আগে মডেল ডাউনলোড করার জন্য অপেক্ষা করতে হতে পারে। | মডেল অবিলম্বে উপলব্ধ |
চেষ্টা করে দেখুন
- এই API এর একটি উদাহরণ ব্যবহার দেখতে নমুনা অ্যাপের সাথে খেলুন।
- কোডল্যাবের সাথে কোডটি নিজে চেষ্টা করুন।
আপনি শুরু করার আগে
আপনার প্রকল্প-স্তরের
build.gradle
ফাইলে, আপনারbuildscript
এবংallprojects
উভয় বিভাগেই Google-এর Maven সংগ্রহস্থল অন্তর্ভুক্ত করা নিশ্চিত করুন৷আপনার মডিউলের অ্যাপ-লেভেল গ্রেডল ফাইলে এমএল কিট অ্যান্ড্রয়েড লাইব্রেরির জন্য নির্ভরতা যোগ করুন, যা সাধারণত
app/build.gradle
হয়। আপনার প্রয়োজনের উপর ভিত্তি করে নিম্নলিখিত নির্ভরতাগুলির মধ্যে একটি চয়ন করুন:আপনার অ্যাপের সাথে মডেল বান্ডিল করার জন্য:
dependencies { // ... // Use this dependency to bundle the model with your app implementation 'com.google.mlkit:face-detection:16.1.7' }
Google Play পরিষেবাগুলিতে মডেলটি ব্যবহার করার জন্য:
dependencies { // ... // Use this dependency to use the dynamically downloaded model in Google Play Services implementation 'com.google.android.gms:play-services-mlkit-face-detection:17.1.0' }
আপনি যদি Google Play পরিষেবাগুলিতে মডেলটি ব্যবহার করতে চান , তাহলে প্লে স্টোর থেকে আপনার অ্যাপ ইনস্টল হওয়ার পরে আপনি ডিভাইসে মডেলটিকে স্বয়ংক্রিয়ভাবে ডাউনলোড করতে আপনার অ্যাপটি কনফিগার করতে পারেন। এটি করতে, আপনার অ্যাপের
AndroidManifest.xml
ফাইলে নিম্নলিখিত ঘোষণা যোগ করুন:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="face" > <!-- To use multiple models: android:value="face,model2,model3" --> </application>
এছাড়াও আপনি স্পষ্টভাবে মডেলের উপলব্ধতা পরীক্ষা করতে পারেন এবং Google Play পরিষেবা ModuleInstallClient API- এর মাধ্যমে ডাউনলোডের অনুরোধ করতে পারেন।
আপনি যদি ইনস্টল-টাইম মডেল ডাউনলোডগুলি সক্ষম না করেন বা স্পষ্ট ডাউনলোডের অনুরোধ না করেন, আপনি প্রথমবার ডিটেক্টর চালানোর সময় মডেলটি ডাউনলোড করা হবে৷ ডাউনলোড সম্পূর্ণ হওয়ার আগে আপনি যে অনুরোধগুলি করেন তা কোনও ফলাফল দেয় না।
ইনপুট ইমেজ নির্দেশিকা
মুখ শনাক্তকরণের জন্য, আপনার কমপক্ষে 480x360 পিক্সেলের মাত্রা সহ একটি চিত্র ব্যবহার করা উচিত। ML Kit সঠিকভাবে মুখ সনাক্ত করতে, ইনপুট চিত্রগুলিতে পর্যাপ্ত পিক্সেল ডেটা দ্বারা প্রতিনিধিত্ব করা মুখগুলি থাকতে হবে৷ সাধারণভাবে, আপনি একটি ছবিতে সনাক্ত করতে চান এমন প্রতিটি মুখ কমপক্ষে 100x100 পিক্সেল হওয়া উচিত। আপনি যদি মুখের কনট্যুরগুলি সনাক্ত করতে চান, এমএল কিটের উচ্চ রেজোলিউশন ইনপুট প্রয়োজন: প্রতিটি মুখ কমপক্ষে 200x200 পিক্সেল হওয়া উচিত।
আপনি যদি একটি রিয়েল-টাইম অ্যাপ্লিকেশনে মুখগুলি সনাক্ত করেন তবে আপনি ইনপুট চিত্রগুলির সামগ্রিক মাত্রাগুলিও বিবেচনা করতে চাইতে পারেন৷ ছোট ছবিগুলি দ্রুত প্রক্রিয়া করা যেতে পারে, তাই লেটেন্সি কমাতে, কম রেজোলিউশনে ছবিগুলি ক্যাপচার করুন, তবে উপরের নির্ভুলতার প্রয়োজনীয়তাগুলি মনে রাখবেন এবং নিশ্চিত করুন যে বিষয়ের মুখ যতটা সম্ভব ছবিটি দখল করে। এছাড়াও রিয়েল-টাইম কর্মক্ষমতা উন্নত করার টিপস দেখুন।
খারাপ ইমেজ ফোকাস এছাড়াও নির্ভুলতা প্রভাবিত করতে পারে. আপনি গ্রহণযোগ্য ফলাফল না পেলে, ব্যবহারকারীকে ছবিটি পুনরায় ক্যাপচার করতে বলুন।
ক্যামেরার সাপেক্ষে একটি মুখের অভিযোজন ML কিট মুখের বৈশিষ্ট্যগুলিকেও প্রভাবিত করতে পারে৷ মুখ সনাক্তকরণ ধারণা দেখুন।
1. ফেস ডিটেক্টর কনফিগার করুন
আপনি একটি ছবিতে মুখ সনাক্তকরণ প্রয়োগ করার আগে, আপনি যদি ফেস ডিটেক্টরের ডিফল্ট সেটিংস পরিবর্তন করতে চান তবে একটিFaceDetectorOptions
অবজেক্টের সাথে সেই সেটিংসগুলি নির্দিষ্ট করুন৷ আপনি নিম্নলিখিত সেটিংস পরিবর্তন করতে পারেন:সেটিংস | |
---|---|
setPerformanceMode | PERFORMANCE_MODE_FAST (ডিফল্ট) | PERFORMANCE_MODE_ACCURATE মুখ সনাক্ত করার সময় গতি বা নির্ভুলতার পক্ষে। |
setLandmarkMode | LANDMARK_MODE_NONE (ডিফল্ট) | LANDMARK_MODE_ALL মুখের "ল্যান্ডমার্ক" শনাক্ত করার চেষ্টা করবেন কিনা: চোখ, কান, নাক, গাল, মুখ ইত্যাদি। |
setContourMode | CONTOUR_MODE_NONE (ডিফল্ট) | CONTOUR_MODE_ALL মুখের বৈশিষ্ট্যগুলির কনট্যুর সনাক্ত করতে হবে কিনা। একটি ছবিতে শুধুমাত্র সবচেয়ে বিশিষ্ট মুখের জন্য কনট্যুর সনাক্ত করা হয়। |
setClassificationMode | CLASSIFICATION_MODE_NONE (ডিফল্ট) | CLASSIFICATION_MODE_ALL মুখগুলিকে "হাসি" এবং "চোখ খোলা" এর মতো বিভাগগুলিতে শ্রেণীবদ্ধ করা যায় কিনা। |
setMinFaceSize | float (ডিফল্ট: 0.1f )মাথার প্রস্থ থেকে ছবির প্রস্থের অনুপাত হিসাবে প্রকাশ করা সবচেয়ে ছোট কাঙ্ক্ষিত মুখের আকার সেট করে৷ |
enableTracking | false (ডিফল্ট) | true মুখগুলিকে একটি আইডি বরাদ্দ করা হবে কি না, যা সমস্ত ছবি জুড়ে মুখগুলি ট্র্যাক করতে ব্যবহার করা যেতে পারে৷ মনে রাখবেন যখন কনট্যুর সনাক্তকরণ সক্ষম করা হয়, শুধুমাত্র একটি মুখ সনাক্ত করা হয়, তাই মুখ ট্র্যাকিং দরকারী ফলাফল দেয় না। এই কারণে, এবং সনাক্তকরণের গতি উন্নত করতে, কনট্যুর সনাক্তকরণ এবং ফেস ট্র্যাকিং উভয়ই সক্ষম করবেন না। |
যেমন:
কোটলিন
// High-accuracy landmark detection and face classification val highAccuracyOpts = FaceDetectorOptions.Builder() .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE) .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL) .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL) .build() // Real-time contour detection val realTimeOpts = FaceDetectorOptions.Builder() .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL) .build()
জাভা
// High-accuracy landmark detection and face classification FaceDetectorOptions highAccuracyOpts = new FaceDetectorOptions.Builder() .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE) .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL) .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL) .build(); // Real-time contour detection FaceDetectorOptions realTimeOpts = new FaceDetectorOptions.Builder() .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL) .build();
2. ইনপুট ইমেজ প্রস্তুত করুন
একটি ছবিতে মুখ সনাক্ত করতে, একটিBitmap
, media.Image
ইমেজ , ByteBuffer
, বাইট অ্যারে বা ডিভাইসে একটি ফাইল থেকে একটি InputImage
অবজেক্ট তৈরি করুন৷ তারপর, FaceDetector
এর process
পদ্ধতিতে InputImage
অবজেক্টটি পাস করুন।মুখ সনাক্তকরণের জন্য, আপনার কমপক্ষে 480x360 পিক্সেলের মাত্রা সহ একটি চিত্র ব্যবহার করা উচিত। আপনি যদি রিয়েল টাইমে মুখগুলি শনাক্ত করেন, তাহলে এই ন্যূনতম রেজোলিউশনে ফ্রেম ক্যাপচার করা লেটেন্সি কমাতে সাহায্য করতে পারে৷
আপনি বিভিন্ন উত্স থেকে একটি InputImage
অবজেক্ট তৈরি করতে পারেন, প্রতিটি নীচে ব্যাখ্যা করা হয়েছে৷
একটি media.Image
ব্যবহার করে. ইমেজ
একটি media.Image
থেকে একটি InputImage
অবজেক্ট তৈরি করতে। ইমেজ অবজেক্ট, যেমন আপনি যখন একটি ডিভাইসের ক্যামেরা থেকে একটি ইমেজ ক্যাপচার করেন, তখন media.Image
পাস করুন। ইমেজ অবজেক্ট এবং ইমেজের রোটেশন InputImage.fromMediaImage()
এ।
আপনি যদি CameraX লাইব্রেরি ব্যবহার করেন, OnImageCapturedListener
এবং ImageAnalysis.Analyzer
ক্লাসগুলি আপনার জন্য ঘূর্ণন মান গণনা করে৷
কোটলিন
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
জাভা
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
আপনি যদি এমন একটি ক্যামেরা লাইব্রেরি ব্যবহার না করেন যা আপনাকে চিত্রের ঘূর্ণন ডিগ্রী দেয়, আপনি ডিভাইসের ঘূর্ণন ডিগ্রী এবং ডিভাইসে ক্যামেরা সেন্সরের অভিযোজন থেকে এটি গণনা করতে পারেন:
কোটলিন
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
জাভা
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
তারপর, media.Image
অবজেক্ট এবং ঘূর্ণন ডিগ্রী মান InputImage.fromMediaImage()
এ পাস করুন :
কোটলিন
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
একটি ফাইল ইউআরআই ব্যবহার করে
একটি ফাইল URI থেকে একটি InputImage
অবজেক্ট তৈরি করতে, অ্যাপের প্রসঙ্গ এবং ফাইল URIকে InputImage.fromFilePath()
এ পাস করুন। এটি উপযোগী যখন আপনি একটি ACTION_GET_CONTENT
উদ্দেশ্য ব্যবহার করে ব্যবহারকারীকে তাদের গ্যালারি অ্যাপ থেকে একটি ছবি নির্বাচন করতে অনুরোধ করেন৷
কোটলিন
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
একটি ByteBuffer
বা ByteArray
ব্যবহার করে
একটি ByteBuffer
বা একটি ByteArray
থেকে একটি InputImage
অবজেক্ট তৈরি করতে, প্রথমে media.Image
ইনপুটের জন্য পূর্বে বর্ণিত চিত্রের ঘূর্ণন ডিগ্রি গণনা করুন৷ তারপরে, ছবির উচ্চতা, প্রস্থ, রঙ এনকোডিং বিন্যাস এবং ঘূর্ণন ডিগ্রী সহ বাফার বা অ্যারে সহ InputImage
অবজেক্ট তৈরি করুন:
কোটলিন
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
জাভা
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
একটি Bitmap
ব্যবহার করে
একটি Bitmap
বস্তু থেকে একটি InputImage
অবজেক্ট তৈরি করতে, নিম্নলিখিত ঘোষণা করুন:
কোটলিন
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
চিত্রটি ঘূর্ণন ডিগ্রী সহ একটি Bitmap
বস্তু দ্বারা উপস্থাপিত হয়।
3. ফেসডিটেক্টরের একটি উদাহরণ পান
কোটলিন
val detector = FaceDetection.getClient(options) // Or, to use the default option: // val detector = FaceDetection.getClient();
জাভা
FaceDetector detector = FaceDetection.getClient(options); // Or use the default options: // FaceDetector detector = FaceDetection.getClient();
4. ইমেজ প্রক্রিয়া
process
পদ্ধতিতে চিত্রটি পাস করুন: কোটলিন
val result = detector.process(image) .addOnSuccessListener { faces -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
জাভা
Task<List<Face>> result = detector.process(image) .addOnSuccessListener( new OnSuccessListener<List<Face>>() { @Override public void onSuccess(List<Face> faces) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
5. সনাক্ত করা মুখ সম্পর্কে তথ্য পান
মুখ সনাক্তকরণ অপারেশন সফল হলে,Face
বস্তুর একটি তালিকা সফল শ্রোতার কাছে পাঠানো হয়। প্রতিটি Face
অবজেক্ট একটি মুখের প্রতিনিধিত্ব করে যা ছবিতে সনাক্ত করা হয়েছিল। প্রতিটি মুখের জন্য, আপনি ইনপুট চিত্রে এর আবদ্ধ স্থানাঙ্ক পেতে পারেন, সেইসাথে আপনি ফেস ডিটেক্টরকে খুঁজে বের করার জন্য কনফিগার করেছেন এমন অন্য কোনো তথ্য। যেমন: কোটলিন
for (face in faces) { val bounds = face.boundingBox val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): val leftEar = face.getLandmark(FaceLandmark.LEFT_EAR) leftEar?.let { val leftEarPos = leftEar.position } // If contour detection was enabled: val leftEyeContour = face.getContour(FaceContour.LEFT_EYE)?.points val upperLipBottomContour = face.getContour(FaceContour.UPPER_LIP_BOTTOM)?.points // If classification was enabled: if (face.smilingProbability != null) { val smileProb = face.smilingProbability } if (face.rightEyeOpenProbability != null) { val rightEyeOpenProb = face.rightEyeOpenProbability } // If face tracking was enabled: if (face.trackingId != null) { val id = face.trackingId } }
জাভা
for (Face face : faces) { Rect bounds = face.getBoundingBox(); float rotY = face.getHeadEulerAngleY(); // Head is rotated to the right rotY degrees float rotZ = face.getHeadEulerAngleZ(); // Head is tilted sideways rotZ degrees // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): FaceLandmark leftEar = face.getLandmark(FaceLandmark.LEFT_EAR); if (leftEar != null) { PointF leftEarPos = leftEar.getPosition(); } // If contour detection was enabled: List<PointF> leftEyeContour = face.getContour(FaceContour.LEFT_EYE).getPoints(); List<PointF> upperLipBottomContour = face.getContour(FaceContour.UPPER_LIP_BOTTOM).getPoints(); // If classification was enabled: if (face.getSmilingProbability() != null) { float smileProb = face.getSmilingProbability(); } if (face.getRightEyeOpenProbability() != null) { float rightEyeOpenProb = face.getRightEyeOpenProbability(); } // If face tracking was enabled: if (face.getTrackingId() != null) { int id = face.getTrackingId(); } }
মুখের রূপের উদাহরণ
যখন আপনার মুখের কনট্যুর সনাক্তকরণ সক্ষম থাকে, তখন আপনি সনাক্ত করা প্রতিটি মুখের বৈশিষ্ট্যের জন্য পয়েন্টগুলির একটি তালিকা পাবেন। এই পয়েন্টগুলি বৈশিষ্ট্যের আকৃতির প্রতিনিধিত্ব করে। কনট্যুরগুলি কীভাবে উপস্থাপন করা হয় সে সম্পর্কে বিশদ বিবরণের জন্য মুখ সনাক্তকরণ ধারণা দেখুন।
নিম্নলিখিত চিত্রটি ব্যাখ্যা করে কিভাবে এই পয়েন্টগুলি একটি মুখের সাথে মানচিত্র করে, এটিকে বড় করতে ছবিটিতে ক্লিক করুন:
রিয়েল-টাইম ফেস ডিটেকশন
আপনি যদি একটি রিয়েল-টাইম অ্যাপ্লিকেশনে মুখ সনাক্তকরণ ব্যবহার করতে চান, সেরা ফ্রেমরেটগুলি অর্জন করতে এই নির্দেশিকাগুলি অনুসরণ করুন:
মুখের কনট্যুর সনাক্তকরণ বা শ্রেণীবিভাগ এবং ল্যান্ডমার্ক সনাক্তকরণ ব্যবহার করতে ফেস ডিটেক্টর কনফিগার করুন, তবে উভয়ই নয়:
কনট্যুর সনাক্তকরণ
ল্যান্ডমার্ক সনাক্তকরণ
শ্রেণীবিভাগ
ল্যান্ডমার্ক সনাক্তকরণ এবং শ্রেণীবিভাগ
কনট্যুর সনাক্তকরণ এবং ল্যান্ডমার্ক সনাক্তকরণ
কনট্যুর সনাক্তকরণ এবং শ্রেণীবিভাগ
কনট্যুর সনাক্তকরণ, ল্যান্ডমার্ক সনাক্তকরণ, এবং শ্রেণীবিভাগFAST
মোড সক্ষম করুন (ডিফল্টরূপে সক্ষম)।কম রেজোলিউশনে ছবি তোলার কথা বিবেচনা করুন। যাইহোক, এই API এর চিত্র মাত্রা প্রয়োজনীয়তাও মনে রাখবেন।
Camera
বা camera2
API ব্যবহার করলে, ডিটেক্টরে থ্রোটল কল করুন। ডিটেক্টর চলাকালীন একটি নতুন ভিডিও ফ্রেম উপলব্ধ হলে, ফ্রেমটি ফেলে দিন। একটি উদাহরণের জন্য Quickstart নমুনা অ্যাপে VisionProcessorBase
ক্লাস দেখুন।CameraX
API ব্যবহার করেন, নিশ্চিত হন যে ব্যাকপ্রেশার কৌশলটি এর ডিফল্ট মান ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
এ সেট করা আছে। এটি গ্যারান্টি দেয় যে একবারে বিশ্লেষণের জন্য শুধুমাত্র একটি চিত্র সরবরাহ করা হবে। বিশ্লেষক ব্যস্ত থাকাকালীন যদি আরও ছবি তৈরি করা হয়, তবে সেগুলি স্বয়ংক্রিয়ভাবে ড্রপ করা হবে এবং বিতরণের জন্য সারিবদ্ধ হবে না। একবার ImageProxy.close() কল করে বিশ্লেষিত চিত্রটি বন্ধ হয়ে গেলে পরবর্তী সর্বশেষ চিত্রটি বিতরণ করা হবে।CameraSourcePreview
এবং GraphicOverlay
ক্লাসগুলি দেখুন।ImageFormat.YUV_420_888
ফরম্যাটে ছবি ক্যাপচার করুন। আপনি পুরানো ক্যামেরা API ব্যবহার করলে, ImageFormat.NV21
ফর্ম্যাটে ছবিগুলি ক্যাপচার করুন৷