Görüntü ve videolardaki yüzleri algılamak için ML Kit'i kullanabilirsiniz.
Özellik | Paketsiz | Gruplandırılanlar |
---|---|---|
Uygulama | Model, Google Play Hizmetleri aracılığıyla dinamik olarak indirilir. | Model, derleme zamanında uygulamanıza statik olarak bağlanır. |
Uygulama boyutu | Boyut yaklaşık 800 KB artar. | Boyut yaklaşık 6,9 MB artar. |
Başlatma süresi | İlk kullanımdan önce modelin indirilmesini beklemeniz gerekebilir. | Model hemen kullanılabilir |
Deneyin
- Bu API'nin örnek kullanımını görmek için örnek uygulamayı inceleyin.
- Codelab ile kodu kendiniz deneyin.
Başlamadan önce
Proje düzeyindeki
build.gradle
dosyanızda, Google'ın Maven deposunu hembuildscript
hem deallprojects
bölümlerinize eklediğinizden emin olun.ML Kit Android kitaplıklarının bağımlılıkları, modülünüzün uygulama düzeyindeki Gradle dosyasına (genellikle
app/build.gradle
) eklenmelidir. İhtiyaçlarınıza göre aşağıdaki bağımlılıklardan birini seçin:Modeli uygulamanızla paketlemek için:
dependencies { // ... // Use this dependency to bundle the model with your app implementation 'com.google.mlkit:face-detection:16.1.7' }
Modeli Google Play Hizmetleri'nde kullanmak için:
dependencies { // ... // Use this dependency to use the dynamically downloaded model in Google Play Services implementation 'com.google.android.gms:play-services-mlkit-face-detection:17.1.0' }
Modeli Google Play Hizmetleri'nde kullanmayı seçerseniz uygulamanızı, Play Store'dan yüklendikten sonra modeli cihaza otomatik olarak indirecek şekilde yapılandırabilirsiniz. Bunu yapmak için uygulamanızın
AndroidManifest.xml
dosyasına aşağıdaki beyanı ekleyin:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="face" > <!-- To use multiple models: android:value="face,model2,model3" --> </application>
Ayrıca Google Play Hizmetleri ModuleInstallClient API aracılığıyla modelin kullanılabilirliğini açıkça kontrol edebilir ve indirme isteğinde bulunabilirsiniz.
Yükleme sırasında model indirmelerini etkinleştirmezseniz veya açık indirme isteğinde bulunmazsanız model, dedektörü ilk kez çalıştırdığınızda indirilir. İndirme tamamlanmadan önce gönderdiğiniz istekler sonuç vermez.
Giriş resmi kuralları
Yüz tanıma için en az 480x360 piksel boyutlarında bir resim kullanmanız gerekir. ML Kit'in yüzleri doğru şekilde algılaması için giriş resimlerinin yeterli piksel verisiyle temsil edilen yüzler içermesi gerekir. Genel olarak, bir resimde tespit etmek istediğiniz her yüz en az 100x100 piksel olmalıdır. Yüzlerin dış çizgilerini tespit etmek istiyorsanız ML Kit daha yüksek çözünürlüklü giriş gerektirir: Her yüz en az 200x200 piksel olmalıdır.
Gerçek zamanlı bir uygulamada yüz algılarsanız giriş resimlerinin genel boyutlarını da dikkate alabilirsiniz. Daha küçük resimler daha hızlı işlenebilir. Bu nedenle, gecikmeyi azaltmak için resimleri daha düşük çözünürlüklerde çekin ancak yukarıdaki doğruluk koşullarını göz önünde bulundurun ve öznenin yüzünün resmin mümkün olduğunca büyük bir kısmını kaplamasını sağlayın. Gerçek zamanlı performansı iyileştirmeyle ilgili ipuçlarına da göz atın.
Resmin odaklanmaması da doğruluğu etkileyebilir. Kabul edilebilir sonuçlar elde edemezseniz kullanıcıdan resmi yeniden çekmesini isteyin.
Yüzün kameraya göre yönü de ML Kit'in algıladığı yüz özelliklerini etkileyebilir. Yüz Algılama Kavramları başlıklı makaleyi inceleyin.
1. Yüz algılayıcıyı yapılandırma
Bir resme yüz algılama özelliğini uygulamadan önce yüz algılayıcının varsayılan ayarlarından herhangi birini değiştirmek istiyorsanız bu ayarları birFaceDetectorOptions
nesnesi ile belirtin.
Aşağıdaki ayarları değiştirebilirsiniz:
Ayarlar | |
---|---|
setPerformanceMode
|
PERFORMANCE_MODE_FAST (varsayılan)
|
PERFORMANCE_MODE_ACCURATE
Yüz algılarken hıza veya doğruluğa öncelik verin. |
setLandmarkMode
|
LANDMARK_MODE_NONE (varsayılan)
|
LANDMARK_MODE_ALL
Yüz "landmark'larını (gözler, kulaklar, burun, yanaklar, ağız vb.) tespit etmeye çalışılıp çalışılmayacağı. |
setContourMode
|
CONTOUR_MODE_NONE (varsayılan)
|
CONTOUR_MODE_ALL
Yüz özelliklerinin dış hatlarının algılanıp algılanmayacağı. Kontur, yalnızca resimdeki en belirgin yüz için algılanır. |
setClassificationMode
|
CLASSIFICATION_MODE_NONE (varsayılan)
|
CLASSIFICATION_MODE_ALL
Yüzlerin "gülümsüyor" ve "gözler açık" gibi kategorilere ayrılıp ayrılmayacağı. |
setMinFaceSize
|
float (varsayılan: 0.1f )
Kafanın genişliğinin resmin genişliğine oranı olarak ifade edilen, istenen en küçük yüz boyutunu belirler. |
enableTracking
|
false (varsayılan) | true
Yüzlere, resimlerdeki yüzleri izlemek için kullanılabilecek bir kimlik atanıp atanmayacağı. Kontur algılama etkinleştirildiğinde yalnızca bir yüzün algılandığını ve bu nedenle yüz izlemenin yararlı sonuçlar vermediğini unutmayın. Bu nedenle ve algılama hızını artırmak için hem kenar algılama hem de yüz izlemeyi etkinleştirmeyin. |
Örneğin:
Kotlin
// High-accuracy landmark detection and face classification val highAccuracyOpts = FaceDetectorOptions.Builder() .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE) .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL) .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL) .build() // Real-time contour detection val realTimeOpts = FaceDetectorOptions.Builder() .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL) .build()
Java
// High-accuracy landmark detection and face classification FaceDetectorOptions highAccuracyOpts = new FaceDetectorOptions.Builder() .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE) .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL) .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL) .build(); // Real-time contour detection FaceDetectorOptions realTimeOpts = new FaceDetectorOptions.Builder() .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL) .build();
2. Giriş resmini hazırlama
Bir resimdeki yüzleri algılamak için cihazdaki birBitmap
, media.Image
, ByteBuffer
, bayt dizisi veya dosyadan InputImage
nesnesi oluşturun. Ardından InputImage
nesnesini FaceDetector
nesnesinin process
yöntemine iletin.
Yüz algılama için en az 480x360 piksel boyutunda bir resim kullanmanız gerekir. Yüzleri gerçek zamanlı olarak algılıyorsanız kareleri bu minimum çözünürlükte yakalamak gecikmeyi azaltmaya yardımcı olabilir.
Farklı kaynaklardan InputImage
nesnesi oluşturabilirsiniz. Bunların her biri aşağıda açıklanmıştır.
media.Image
kullanma
Bir media.Image
nesnesinden InputImage
nesnesi oluşturmak için (ör. bir cihazın kamerasından resim çekerken) media.Image
nesnesini ve resmin dönme açısını InputImage.fromMediaImage()
'e iletin.
CameraX kitaplığını kullanıyorsanız OnImageCapturedListener
ve ImageAnalysis.Analyzer
sınıfları rotasyon değerini sizin için hesaplar.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Resmin dönme derecesini gösteren bir kamera kitaplığı kullanmıyorsanız bunu cihazın dönme derecesinden ve cihazdaki kamera sensörünün yöneliminden hesaplayabilirsiniz:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Ardından, media.Image
nesnesini ve dönüş derecesi değerini InputImage.fromMediaImage()
'e iletin:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Dosya URI'si kullanma
Dosya URI'sinden InputImage
nesnesi oluşturmak için uygulama bağlamını ve dosya URI'sini InputImage.fromFilePath()
'a iletin. Bu, kullanıcıdan galeri uygulamasından bir resim seçmesini istemek için ACTION_GET_CONTENT
intent'i kullandığınızda kullanışlıdır.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
ByteBuffer
veya ByteArray
kullanma
ByteBuffer
veya ByteArray
öğesinden InputImage
nesnesi oluşturmak için önce, media.Image
girişi için daha önce açıklandığı gibi görüntünün döndürme derecesini hesaplayın.
Ardından, resmin yüksekliği, genişliği, renk kodlama biçimi ve döndürme derecesiyle birlikte arabelleği veya diziyi kullanarak InputImage
nesnesini oluşturun:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Bitmap
kullanma
Bitmap
nesnesinden InputImage
nesnesi oluşturmak için aşağıdaki beyanı yapın:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
Resim, döndürme dereceleriyle birlikte bir Bitmap
nesnesi ile temsil edilir.
3. FaceDetector örneği alma
Kotlin
val detector = FaceDetection.getClient(options) // Or, to use the default option: // val detector = FaceDetection.getClient();
Java
FaceDetector detector = FaceDetection.getClient(options); // Or use the default options: // FaceDetector detector = FaceDetection.getClient();
4. Resmi işleme
Resmiprocess
yöntemine iletin:
Kotlin
val result = detector.process(image) .addOnSuccessListener { faces -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<List<Face>> result = detector.process(image) .addOnSuccessListener( new OnSuccessListener<List<Face>>() { @Override public void onSuccess(List<Face> faces) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
5. Algılanan yüzler hakkında bilgi edinme
Yüz algılama işlemi başarılı olursa başarı dinleyicisineFace
nesnelerinin listesi iletilir. Her Face
nesnesi, resimde algılanan bir yüzü temsil eder. Her yüz için giriş resmindeki sınırlayıcı koordinatlarını ve yüz algılayıcıyı bulması için yapılandırdığınız diğer bilgileri alabilirsiniz. Örneğin:
Kotlin
for (face in faces) { val bounds = face.boundingBox val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): val leftEar = face.getLandmark(FaceLandmark.LEFT_EAR) leftEar?.let { val leftEarPos = leftEar.position } // If contour detection was enabled: val leftEyeContour = face.getContour(FaceContour.LEFT_EYE)?.points val upperLipBottomContour = face.getContour(FaceContour.UPPER_LIP_BOTTOM)?.points // If classification was enabled: if (face.smilingProbability != null) { val smileProb = face.smilingProbability } if (face.rightEyeOpenProbability != null) { val rightEyeOpenProb = face.rightEyeOpenProbability } // If face tracking was enabled: if (face.trackingId != null) { val id = face.trackingId } }
Java
for (Face face : faces) { Rect bounds = face.getBoundingBox(); float rotY = face.getHeadEulerAngleY(); // Head is rotated to the right rotY degrees float rotZ = face.getHeadEulerAngleZ(); // Head is tilted sideways rotZ degrees // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): FaceLandmark leftEar = face.getLandmark(FaceLandmark.LEFT_EAR); if (leftEar != null) { PointF leftEarPos = leftEar.getPosition(); } // If contour detection was enabled: List<PointF> leftEyeContour = face.getContour(FaceContour.LEFT_EYE).getPoints(); List<PointF> upperLipBottomContour = face.getContour(FaceContour.UPPER_LIP_BOTTOM).getPoints(); // If classification was enabled: if (face.getSmilingProbability() != null) { float smileProb = face.getSmilingProbability(); } if (face.getRightEyeOpenProbability() != null) { float rightEyeOpenProb = face.getRightEyeOpenProbability(); } // If face tracking was enabled: if (face.getTrackingId() != null) { int id = face.getTrackingId(); } }
Yüz kontürleri örneği
Yüz konturu algılama özelliğini etkinleştirdiğinizde, algılanan her yüz özelliğinin nokta listesini alırsınız. Bu noktalar, özelliğin şeklini temsil eder. Konturların nasıl temsil edildiği hakkında ayrıntılı bilgi için Yüz Algılama Kavramları başlıklı makaleyi inceleyin.
Aşağıdaki resimde bu noktaların bir yüzle nasıl eşlendiği gösterilmektedir. Resmi büyütmek için tıklayın:
Gerçek zamanlı yüz algılama
Yüz algılamayı gerçek zamanlı bir uygulamada kullanmak istiyorsanız en iyi kare hızlarına ulaşmak için aşağıdaki yönergeleri uygulayın:
Yüz algılayıcıyı, yüz konturu algılama veya sınıflandırma ve yer işareti algılama özelliklerinden birini (ikisini birden değil) kullanacak şekilde yapılandırın:
Kontur algılama
Önemli nokta algılama
Sınıflandırma
Önemli nokta algılama ve sınıflandırma
Kontur algılama ve önemli nokta algılama
Kontur algılama ve sınıflandırma
Kontur algılama, önemli nokta algılama ve sınıflandırmaFAST
modunu etkinleştirin (varsayılan olarak etkindir).Resimleri daha düşük çözünürlükte çekmeyi deneyin. Ancak bu API'nin resim boyutu koşullarını da göz önünde bulundurun.
Camera
veya camera2
API'sini kullanıyorsanız algılayıcıya yapılan çağrıları sınırlandırın. Algılayıcı çalışırken yeni bir video karesi kullanılabilir hale gelirse kareyi bırakın. Örnek olarak hızlı başlangıç kılavuzu örnek uygulamasındaki
VisionProcessorBase
sınıfına bakın.
CameraX
API'sini kullanıyorsanız geri basınç stratejisinin varsayılan değerine ayarlandığından emin olun
ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
.
Bu sayede, aynı anda analiz için yalnızca bir resim gönderilir. Analizör meşgulken daha fazla görüntü oluşturulursa bu görüntüler otomatik olarak bırakılır ve yayınlama için sıraya alınmaz. Analiz edilen resim, ImageProxy.close() çağrısı yapılarak kapatıldıktan sonra bir sonraki en yeni resim yayınlanır.
CameraSourcePreview
ve
GraphicOverlay
sınıflarına bakın.
ImageFormat.YUV_420_888
biçiminde kaydedin. Eski Camera API'yi kullanıyorsanız resimleri ImageFormat.NV21
biçiminde çekin.