इमेज और वीडियो में चेहरों की पहचान करने के लिए, एमएल किट का इस्तेमाल किया जा सकता है.
सुविधा | अनबंडल किए गए | बंडल किए गए |
---|---|---|
लागू करना | मॉडल को Google Play services की मदद से, डाइनैमिक रूप से डाउनलोड किया जाता है. | बिल्ड के दौरान, मॉडल आपके ऐप्लिकेशन से स्टैटिक रूप से लिंक होता है. |
ऐप्लिकेशन का साइज़ | साइज़ करीब 800 केबी बढ़ जाता है. | साइज़ करीब 6.9 एमबी बढ़ जाता है. |
प्रोसेस शुरू होने का समय | पहली बार इस्तेमाल करने से पहले, मॉडल के डाउनलोड होने तक इंतज़ार करना पड़ सकता है. | मॉडल तुरंत उपलब्ध हो जाता है |
इसे आज़माएं
- सैंपल वाले ऐप्लिकेशन को इस्तेमाल करके देखें, इस एपीआई के इस्तेमाल का एक उदाहरण देखें.
- कोडलैब (कोड बनाना सीखना).
शुरू करने से पहले
अपनी प्रोजेक्ट-लेवल
build.gradle
फ़ाइल में, Google कीbuildscript
औरallprojects
, दोनों सेक्शन में Maven रिपॉज़िटरी.अपने मॉड्यूल में ML Kit Android लाइब्रेरी के लिए डिपेंडेंसी जोड़ें ऐप्लिकेशन लेवल की Gradle फ़ाइल होती है, जो आम तौर पर
app/build.gradle
होती है. कोई एक विकल्प चुनें आपकी ज़रूरतों के हिसाब से नीचे दी गई डिपेंडेंसी:अपने ऐप्लिकेशन के साथ मॉडल को बंडल करने के लिए:
dependencies { // ... // Use this dependency to bundle the model with your app implementation 'com.google.mlkit:face-detection:16.1.7' }
Google Play Services में मॉडल का इस्तेमाल करने के लिए:
dependencies { // ... // Use this dependency to use the dynamically downloaded model in Google Play Services implementation 'com.google.android.gms:play-services-mlkit-face-detection:17.1.0' }
अगर आपको Google Play Services में मॉडल का इस्तेमाल करना है, तो ऐसा करने के बाद, आपका ऐप्लिकेशन मॉडल को डिवाइस पर अपने-आप डाउनलोड कर देगा Play Store से इंस्टॉल किया गया है. ऐसा करने के लिए, यह एलान जोड़ें आपके ऐप्लिकेशन की
AndroidManifest.xml
फ़ाइल:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="face" > <!-- To use multiple models: android:value="face,model2,model3" --> </application>
मॉडल की उपलब्धता को साफ़ तौर पर देखा जा सकता है और इसके ज़रिए डाउनलोड करने का अनुरोध किया जा सकता है Google Play services ModuleInstallClient API.
अगर आपने इंस्टॉल के समय मॉडल डाउनलोड करने की सुविधा चालू नहीं की है या अश्लील फ़ाइल डाउनलोड करने का अनुरोध नहीं किया है, तो पहली बार डिटेक्टर चलाने पर, मॉडल डाउनलोड हो जाता है. आपके अनुरोध डाउनलोड पूरा होने से पहले ही कोई नतीजा न मिले.
इनपुट इमेज के लिए दिशा-निर्देश
चेहरा पहचानने के लिए, आपको कम से कम 480x360 पिक्सेल के आयाम वाली इमेज का उपयोग करना चाहिए. एमएल किट में चेहरों की सटीक पहचान हो, इसके लिए इनपुट इमेज में चेहरे होने चाहिए जिन्हें काफ़ी पिक्सल डेटा से दिखाया जाता है. आम तौर पर, आपके हिसाब से बनाया गया हर चेहरा ताकि इमेज कम से कम 100x100 पिक्सल की हो. अगर आपको यह पता लगाना है कि चेहरे की बनावट, ML किट में हाई रिज़ॉल्यूशन इनपुट की ज़रूरत होती है. हर फ़ेस यह कम से कम 200x200 पिक्सल का होना चाहिए.
अगर आपको रीयल-टाइम ऐप्लिकेशन में चेहरों का पता चलता है, तो आपको इनपुट इमेज के कुल डाइमेंशन पर विचार किया जा सकता है. छोटी इमेज तेज़ी से प्रोसेस होते हैं, इसलिए इंतज़ार का समय कम करने के लिए, इमेज को कम रिज़ॉल्यूशन में कैप्चर करें, को ध्यान में रखें और पक्का करें कि सब्जेक्ट का चेहरा, इमेज के ज़्यादातर हिस्से को घेर लेता है. यह भी देखें रीयल-टाइम में परफ़ॉर्मेंस को बेहतर बनाने के बारे में सलाह.
खराब इमेज फ़ोकस की वजह से भी सटीक जानकारी पर असर पड़ सकता है. मंज़ूरी न मिलने पर नतीजे के तौर पर, उपयोगकर्ता से इमेज को दोबारा कैप्चर करने के लिए कहें.
कैमरे के हिसाब से किसी चेहरे का ओरिएंटेशन इस बात पर भी असर डाल सकता है कि चेहरे की ML Kit की मदद से पता लगाना. यहां जाएं: चेहरे की पहचान के कॉन्सेप्ट.
1. चेहरे की पहचान करने वाली सुविधा को कॉन्फ़िगर करें
किसी इमेज पर चेहरे की पहचान करने वाली सुविधा लागू करने से पहले, अगर आप फ़ेस डिटेक्टर की डिफ़ॉल्ट सेटिंग का इस्तेमाल करती है, तोFaceDetectorOptions
ऑब्जेक्ट.
आप निम्न सेटिंग बदल सकते हैं:
सेटिंग | |
---|---|
setPerformanceMode
|
PERFORMANCE_MODE_FAST (डिफ़ॉल्ट)
|
PERFORMANCE_MODE_ACCURATE
चेहरे की पहचान करते समय गति या सटीक जानकारी दें. |
setLandmarkMode
|
LANDMARK_MODE_NONE (डिफ़ॉल्ट)
|
LANDMARK_MODE_ALL
चेहरे के "लैंडमार्क" को पहचानने की कोशिश की जाए: आंखें, कान, नाक, गाल, मुंह वगैरह. |
setContourMode
|
CONTOUR_MODE_NONE (डिफ़ॉल्ट)
|
CONTOUR_MODE_ALL
चेहरे की बनावट का पता लगाना है या नहीं. कंटूर यह हैं जो किसी इमेज में सिर्फ़ सबसे साफ़ तौर पर दिखने वाले चेहरे के लिए पहचानी जाती है. |
setClassificationMode
|
CLASSIFICATION_MODE_NONE (डिफ़ॉल्ट)
|
CLASSIFICATION_MODE_ALL
"मुस्कुराते हुए" जैसी कैटगरी में चेहरों को कैटगरी में बांटना है या नहीं, और "आंखें खुली हों". |
setMinFaceSize
|
float (डिफ़ॉल्ट: 0.1f )
चेहरे का सबसे छोटा आकार सेट करता है, जिसे सिर की चौड़ाई से इमेज की चौड़ाई. |
enableTracking
|
false (डिफ़ॉल्ट) | true
चेहरों को कोई आईडी असाइन करें या नहीं, जिसका इस्तेमाल ट्रैक करने के लिए किया जा सकता है भी मिलते हैं. ध्यान दें कि जब कंटूर पहचान सक्षम हो, तो केवल एक ही चेहरा चेहरा ट्रैक करने की सुविधा से काम के नतीजे नहीं मिलते. इसके लिए और जांच की स्पीड को बेहतर बनाने के लिए, दोनों कंटूर को चालू न करें की सुविधा उपलब्ध है. |
उदाहरण के लिए:
Kotlin
// High-accuracy landmark detection and face classification val highAccuracyOpts = FaceDetectorOptions.Builder() .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE) .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL) .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL) .build() // Real-time contour detection val realTimeOpts = FaceDetectorOptions.Builder() .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL) .build()
Java
// High-accuracy landmark detection and face classification FaceDetectorOptions highAccuracyOpts = new FaceDetectorOptions.Builder() .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE) .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL) .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL) .build(); // Real-time contour detection FaceDetectorOptions realTimeOpts = new FaceDetectorOptions.Builder() .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL) .build();
2. इनपुट इमेज तैयार करें
किसी इमेज में चेहरों की पहचान करने के लिए,InputImage
ऑब्जेक्ट बनाएं
किसी Bitmap
, media.Image
, ByteBuffer
, बाइट कलेक्शन से या
डिवाइस. इसके बाद, InputImage
ऑब्जेक्ट को
FaceDetector
का process
तरीका.
चेहरे की पहचान के लिए, आपको कम से कम 480x360 पिक्सल. रीयल टाइम में चेहरों का पता लगाने के लिए, फ़्रेम कैप्चर किए जा रहे हैं इस कम से कम रिज़ॉल्यूशन पर, इंतज़ार के समय को कम करने में मदद मिल सकती है.
एक InputImage
बनाया जा सकता है
अलग-अलग सोर्स के ऑब्जेक्ट के बारे में बताया गया है. हर ऑब्जेक्ट के बारे में नीचे बताया गया है.
media.Image
का इस्तेमाल करके
InputImage
बनाने के लिए
किसी media.Image
ऑब्जेक्ट से मिला ऑब्जेक्ट, जैसे कि जब आप किसी ऑब्जेक्ट से इमेज कैप्चर करते हैं
फ़ोन का कैमरा इस्तेमाल करने के लिए, media.Image
ऑब्जेक्ट को पास करें और इमेज के
InputImage.fromMediaImage()
का रोटेशन.
अगर आपको
CameraX लाइब्रेरी, OnImageCapturedListener
, और
ImageAnalysis.Analyzer
क्लास, रोटेशन वैल्यू को कैलकुलेट करती हैं
आपके लिए.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
अगर इमेज का रोटेशन डिग्री देने वाली कैमरा लाइब्रेरी का इस्तेमाल नहीं किया जाता, तो डिवाइस की रोटेशन डिग्री और कैमरे के ओरिएंटेशन से इसका हिसाब लगा सकता है डिवाइस में सेंसर:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
इसके बाद, media.Image
ऑब्जेक्ट को पास करें और
InputImage.fromMediaImage()
डिग्री पर घुमाव:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
फ़ाइल यूआरआई का इस्तेमाल करना
InputImage
बनाने के लिए
किसी फ़ाइल यूआरआई से ऑब्जेक्ट को जोड़ने के लिए, ऐप्लिकेशन संदर्भ और फ़ाइल यूआरआई को
InputImage.fromFilePath()
. यह तब काम आता है, जब
उपयोगकर्ता को चुनने का प्रॉम्प्ट भेजने के लिए, ACTION_GET_CONTENT
इंटेंट का इस्तेमाल करें
अपने गैलरी ऐप्लिकेशन से मिली इमेज शामिल करेगा.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
ByteBuffer
या ByteArray
का इस्तेमाल करना
InputImage
बनाने के लिए
ByteBuffer
या ByteArray
से लिया गया ऑब्जेक्ट है, तो पहले इमेज की गणना करें
media.Image
इनपुट के लिए पहले बताई गई रोटेशन डिग्री.
इसके बाद, इमेज के साथ बफ़र या अरे का इस्तेमाल करके, InputImage
ऑब्जेक्ट बनाएं
ऊंचाई, चौड़ाई, कलर एन्कोडिंग फ़ॉर्मैट, और रोटेशन डिग्री:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Bitmap
का इस्तेमाल करके
InputImage
बनाने के लिए
Bitmap
ऑब्जेक्ट में बनाए गए ऑब्जेक्ट के लिए, यह एलान करें:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
इमेज को Bitmap
ऑब्जेक्ट से, रोटेशन डिग्री के साथ दिखाया गया है.
3. FaceDetector का इंस्टेंस पाएं
Kotlin
val detector = FaceDetection.getClient(options) // Or, to use the default option: // val detector = FaceDetection.getClient();
Java
FaceDetector detector = FaceDetection.getClient(options); // Or use the default options: // FaceDetector detector = FaceDetection.getClient();
4. इमेज प्रोसेस करें
process
तरीके से इमेज पास करें:
Kotlin
val result = detector.process(image) .addOnSuccessListener { faces -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<List<Face>> result = detector.process(image) .addOnSuccessListener( new OnSuccessListener<List<Face>>() { @Override public void onSuccess(List<Face> faces) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
5. पहचाने गए चेहरों की जानकारी पाएं
यदि चेहरा पहचानने की कार्रवाई सफल हो जाती है, तोFace
ऑब्जेक्ट को पास किया जाता है
लिसनर. हर Face
ऑब्जेक्ट, पहचाने गए किसी चेहरे को दिखाता है
पर क्लिक करें. हर चेहरे के लिए, इनपुट में इसके बाउंडिंग कोऑर्डिनेट पाए जा सकते हैं
और साथ ही वह जानकारी जिसे आपने फ़ेस डिटेक्टर के तौर पर कॉन्फ़िगर किया था
ढूंढें. उदाहरण के लिए:
Kotlin
for (face in faces) { val bounds = face.boundingBox val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): val leftEar = face.getLandmark(FaceLandmark.LEFT_EAR) leftEar?.let { val leftEarPos = leftEar.position } // If contour detection was enabled: val leftEyeContour = face.getContour(FaceContour.LEFT_EYE)?.points val upperLipBottomContour = face.getContour(FaceContour.UPPER_LIP_BOTTOM)?.points // If classification was enabled: if (face.smilingProbability != null) { val smileProb = face.smilingProbability } if (face.rightEyeOpenProbability != null) { val rightEyeOpenProb = face.rightEyeOpenProbability } // If face tracking was enabled: if (face.trackingId != null) { val id = face.trackingId } }
Java
for (Face face : faces) { Rect bounds = face.getBoundingBox(); float rotY = face.getHeadEulerAngleY(); // Head is rotated to the right rotY degrees float rotZ = face.getHeadEulerAngleZ(); // Head is tilted sideways rotZ degrees // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): FaceLandmark leftEar = face.getLandmark(FaceLandmark.LEFT_EAR); if (leftEar != null) { PointF leftEarPos = leftEar.getPosition(); } // If contour detection was enabled: List<PointF> leftEyeContour = face.getContour(FaceContour.LEFT_EYE).getPoints(); List<PointF> upperLipBottomContour = face.getContour(FaceContour.UPPER_LIP_BOTTOM).getPoints(); // If classification was enabled: if (face.getSmilingProbability() != null) { float smileProb = face.getSmilingProbability(); } if (face.getRightEyeOpenProbability() != null) { float rightEyeOpenProb = face.getRightEyeOpenProbability(); } // If face tracking was enabled: if (face.getTrackingId() != null) { int id = face.getTrackingId(); } }
चेहरे की बनावट के उदाहरण
चेहरे की बनावट की पहचान करने वाली सुविधा चालू होने पर, आपको हर चेहरे की पहचान कर ली गई थी. ये बिंदु दिखाते हैं कि सुविधा. चेहरा देखें कंटूर के तरीके के बारे में जानने के लिए, डिटेक्शन कॉन्सेप्ट बताया गया है.
निम्न चित्र दिखाता है कि ये बिंदु किसी चेहरे से कैसे मैप होते हैं, इमेज को बड़ा करने के लिए:
रीयल-टाइम में चेहरे की पहचान करने की सुविधा
अगर आपको रीयल-टाइम ऐप्लिकेशन में चेहरे की पहचान करने की सुविधा का इस्तेमाल करना है, तो इन निर्देशों का पालन करें सबसे सही फ़्रेमरेट हासिल करने के लिए दिशा-निर्देश:
इनमें से किसी एक का इस्तेमाल करने के लिए, फ़ेस डिटेक्टर को कॉन्फ़िगर करें चेहरे की बनावट की पहचान करने या क्लासिफ़िकेशन और लैंडमार्क की पहचान करने के लिए किया जा सकता है, लेकिन दोनों नहीं:
कंटूर की पहचान
लैंडमार्क की पहचान
क्लासिफ़िकेशन
लैंडमार्क की पहचान करना और उसे अलग-अलग कैटगरी में बांटना
कंटूर की पहचान और लैंडमार्क की पहचान
कंटूर की पहचान और क्लासिफ़िकेशन
कंटूर की पहचान, लैंडमार्क की पहचान, और क्लासिफ़िकेशनFAST
मोड चालू करें (डिफ़ॉल्ट रूप से चालू रहता है).कम रिज़ॉल्यूशन वाली इमेज कैप्चर करें. हालांकि, यह भी ध्यान रखें कि इस एपीआई की इमेज डाइमेंशन से जुड़ी ज़रूरी शर्तें.
Camera
या
camera2
एपीआई,
डिटेक्टर को कॉल थ्रॉटल करती हूँ. अगर किसी नए वीडियो पर
डिटेक्टर के चलने के दौरान फ़्रेम उपलब्ध हो जाता है, फ़्रेम छोड़ दें. ज़्यादा जानकारी के लिए,
उदाहरण के लिए, क्विकस्टार्ट सैंपल ऐप्लिकेशन में VisionProcessorBase
क्लास.
CameraX
एपीआई का इस्तेमाल किया जाता है, तो
पक्का करें कि बैक प्रेशर स्ट्रेटजी अपनी डिफ़ॉल्ट वैल्यू पर सेट है
ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
.
इससे यह गारंटी मिलती है कि विश्लेषण के लिए एक बार में सिर्फ़ एक इमेज डिलीवर की जाएगी. अगर और इमेज
जब एनालाइज़र व्यस्त होता है, तो उसे जनरेट कर दिया जाता है. उसे अपने-आप हटा दिया जाता है.
डिलीवरी. जिस इमेज की जांच की जा रही है उसे बंद करने के लिए, इस नंबर पर कॉल करें
Imageप्रॉक्सी.close(), अगली सबसे नई इमेज डिलीवर की जाएगी.
CameraSourcePreview
और
उदाहरण के लिए, क्विकस्टार्ट सैंपल ऐप्लिकेशन में GraphicOverlay
क्लास.
ImageFormat.YUV_420_888
फ़ॉर्मैट. अगर पुराने Camera API का इस्तेमाल किया जा रहा है, तो इमेज यहां कैप्चर करें
ImageFormat.NV21
फ़ॉर्मैट.